期刊文献+

局部差分隐私的不变后随机

Local Differential Privacy and Invariant Post Randomization Method
下载PDF
导出
摘要 传统的差分隐私保护可能面临由于第三方数据收集者而导致隐私泄漏的威胁.局部差分隐私作为新提出的隐私保护模型,考虑了来自不可信第三方的隐私攻击.本文用局部差分隐私的思想,在不变后随机响应基础上进行改进.首先,构造随机转化矩阵P,使其满足局部差分隐私与不变后随机响应的要求;其次,设计对敏感属性的隐私保护方法,并给出数据扰动的算法;最后,实验验证原始数与扰动数据的统计频率,kL-散度等.实验结果表明本文所用随机化可以带来较小的效用损失,简化对扰动数据的分析.
作者 朱海明 ZHU Hai-ming
出处 《电脑知识与技术》 2018年第7Z期259-261,264,共4页 Computer Knowledge and Technology
  • 相关文献

参考文献3

二级参考文献42

  • 1SWEENEY L. ^-anonymity: a model for protecting privacy[ J ]. Inter-national Journal on Uncertainty, Fuzziness and Knowledge-based Systems,2002,10(5) :557-570.
  • 2SWEENEY L. Achieving A>anonymity privacy protection using gener-alization and suppression[ J]. International Journal on Uncertainty,Fuzziness and Knowledge-based Systems, 2002,10(5) : 571-588.
  • 3Li Ning-hui, LI Tian-cheng, VENKATASUBRAMANIAN S. (-closeness :privacy beyond A:-anonymity and /-diversity [ C ] //Proc of the 23rd International Conference on Data Engineering. Washington DC: IEEE Computer Society ,2007 :106-115.
  • 4MACHANAVAJJHALA A,KIFER D, GEHRKE J, et al. /-diversity; privacy beyond A:-anonymity [ C ] //Proc of the 22nd International Conference on Data Engineering. Washington DC:IEEE Computer Society,2006 :24-35.
  • 5CORMODE G,PROCOPIUC M,SRIVASTAVA D. et aL Differentially private publication of sparse data [ J ]. ArxiV Preprint arXiv : 1103. 0825,2011.
  • 6SARATHY R,MURALIDHAR K. Some additional insights on applying differential privacy for numeric data [ C ]//Proc of International Conference on Privacy in Statistical Databases. Berlin : Springer-Ver-lag,2010:210-219.
  • 7DWORK C, NAOR M,PITASSI T,et al. Pan-private streaming algorithms [C ] //Proc of the 1st Symposium on Innovations in Computer Science. Beijing:Tsinghua University Press, 2010.
  • 8DWORK C, NAOR M,PITASSI T, et al. Differential privacy under continual observation [ C ]//Proc of the 42nd ACM Symposium on Theory of Computing. New York: ACM Press,2010:715-724.
  • 9LI Ning-hui, QARDAJI W,SU Dong. Provably private data anony-mization: or, A:-anonymity meets differential privacy, CERIAS TR 2010-24[ R] . West Lafayette; Center for Education and Research Information Assurance and Security,Purdue University ,2010.
  • 10ZHOU Shu-heng, LIGETT K, WASSERMAN L. Differential privacy with compression [ C ] //Proc of IEEE International Symposium on Information Theory. Washington DC: IEEE Computer Society, 2009: 2718-2722.

共引文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部