摘要
为了更贴合股票价格变化的实际过程,假定股票价格遵循双分数布朗运动驱动的随机微分方程,在期望收益率和波动率均为常数的情况下,利用双分数布朗运动的随机分析理论和保险精算方法,得到了双分数布朗运动环境下的欧式几何篮子期权定价公式.
In order to fit the actual process of stock price changes,assume that the stock price follows the stochastic differential equations driven by bi-fractional Brownian motion,the expected returns and the volatility are constant.The pricing of basket option is discussed by bi-fractional Brownian motion stochastic differential theory and the insurance actuary approach,and the pricing formula of european geometric basket option in bi-fractional jump-diffusion environment is obtained.
出处
《纺织高校基础科学学报》
CAS
2016年第4期-,共6页
Basic Sciences Journal of Textile Universities
基金
陕西省教育厅自然科学专项基金资助项目(14JK1299)
关键词
双分数布朗运动
保险精算方法
几何篮子期权
bi-fractional Brownian motion
insurance actuary approach
geometric european basket option