期刊文献+

多重分割组合数有限和计算公式 被引量:1

The Evaluation of Multiple Partition Involving Combinatorial Numbers
下载PDF
导出
摘要 设正整数n,m,r,非负整数b,a,利用r次单位根的性质,使用复数方法给出一类多重分割组合数有限和与正负相间多重分割组合数有限和用三角函数表示的计算公式,并给出系数为多重分割组合数的对偶三角函数有限和计算公式. Let m,n,r be positive integers,b,a be nonnegative integer,use property of unit root of r times and method of complex function. The trigonometric fuctions are used to express the finite sum of a class of multi-partion combinations. The formula of finite sum of positive and negative multi-partition combinations is also presented by trigometric functions. And gives the finite sum of dual trig functions with coefficients of multi-partition involving combinatorial numbers.
出处 《河南教育学院学报(自然科学版)》 2017年第3期7-12,共6页 Journal of Henan Institute of Education(Natural Science Edition)
基金 宁夏自然科学基金项目(NZ12208) 银川能源学院科研基金项目(2015-KY-Y-49)
关键词 组合数 三角函数 单位根 多重分割 正负相间 有限和 combinatorial numbers trigonometric function unit root multi-partition alternated with positive and negative finite sum
  • 相关文献

参考文献3

二级参考文献10

  • 1Wilf,Herbert S.发生函数论[M].王天明译.北京:清华大学出版社,2003.
  • 2Bruaidi RA.组合学导引[M].武汉:华中工学院出版社,1982:68.
  • 3Lehmer D H. Interesting series involving the central binomial coefficients[J]. Amer, Math. Monthly, 1985, 7: 449-457.
  • 4Sury B. Tianning Wang, and Feng-Zhaen Zhao,Some identities involving of. binomial coefficients[J].J. integer Sequences, 2004, 7(2): 2-12.
  • 5Solo A. general properties involving reciprocal of Binomial coefficients[J]. Journal of integral se- quences, 2006, 9(4): 1-13.
  • 6Amghibech S. On sum involving Binomial coefficient[J]. Journal of integer sequences, 2007, 7(2): 1-17.
  • 7Jin-Hua Yang and Feng-zhen Zhao,Sums involving the inverses of binomial coefficients[J]. Journal of integer Sequences, 2006, 9(6): 1-11.
  • 8Trif T. combinatorial sums and series involving inverses of binomial coefficients[J]. Fibonacci Quar- terly, 2000, 38(1): 79-84.
  • 9Borwein J M, and Girgensohn R. evaluation of binomial series[J]. Aequationens Math, 2005, 70: 25-36.
  • 10R.Sprugnoli,sums of reciprocal of the central binomial coefficients, integral[J], electronic Journal of combinatorial number theory, 2006, 6: 1-18.

共引文献22

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部