期刊文献+

基于非结构化T样条的薄壳等几何分析 被引量:4

Unstructured T-spline-based Isogeometric Analysis for Thin Shells
原文传递
导出
摘要 等几何分析方法采用几何的样条基函数来构建分析模型,从而避免传统有限元法的网格离散过程.采用非结构化T样条构建复杂模型,结合Kirchhoff-Love薄壳理论构造基于非结构化T样条的薄壳单元,并研究其在模态计算和弹性变形分析中的应用.由于样条几何基函数缺乏插值性,等几何分析中单元所受载荷无法像传统有限元法一样直接均分到单元各个节点上,针对这一问题,将任意载荷作用区域分为两种基本形式,通过一定的映射关系将这两种形式由规则形状表示,从而将规则形状的高斯积分点同样映射到不规则区域上.数值算例结果表明,和传统有限元相比,基于非结构化T样条的薄壳等几何分析能够以更少的系统自由度获得精确解,而任意区域的积分映射方法也有效地解决了等几何分析中载荷施加的问题. Isogeometric analysis(IGA) is a method aimed at avoiding meshing procedure of the traditional finite element analysis by using the same basis for analysis as is used to describe the geometry, thus integrating CAE into a general CAD modeling system. The unstructured T-splines are adopted to construct complex geometric models. By integrating the Kirchhoff-Love theory, an IGA thin-shell element is established for the modal analysis and elastic analysis. Due to the non-interpolatory nature of the geometric basis functions, the loads of IGA elements cannot be evenly distributed to the control points as with the traditional finite element. The loading areas are then classified to two basic types and an integration mapping method is proposed to map the Gauss quadrature points of the regular domain to the basic types. Numerical examples illustrated that the unstructured T-splines-based thin-shell element could achieve the convergence with much less degrees of freedom than the traditional finite element method and the integration mapping method solves the imposition problem of external loading effectively.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2018年第15期132-140,共9页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(51475417,51490663,U1608256)
关键词 等几何分析 非结构化T样条 薄壳 Bézier提取 积分映射 isogeometric analysis unstructured T-splines thin-shell Bézier extraction integration mapping
  • 相关文献

参考文献2

二级参考文献25

  • 1马翔,罗俊奇,康宝生,周儒荣.一种trimmed NURBS曲面的裁剪方法[J].工程图学学报,1993,14(1):41-47. 被引量:6
  • 2沈庆云,周来水,张乐年,周儒荣.一种 NURBS 曲面的裁剪方法[J].南京航空航天大学学报,1997,29(2):138-144. 被引量:8
  • 3BRAIBANT V, FLEURY C. Shape optimal design using B-splines[J]. Computer Methods in Applied Mechanics and Engineering, 1984, 44: 247-267.
  • 4PIEGL L, TILLER W. The NURBS book[M]. New York: Springer-Verlag, 1997.
  • 5WALL W A, FRENZEL M A, CYRON C. Isogeometric structural shape optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197: 2976-2788.
  • 6HUGHES T J R, COTTRELL J A, BAZILEVS Y. Isogeomelricanalysis: CAD, f'miteelements, N URBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194: 4135-4195.
  • 7CHO S , HA S H. Isogeometric shape design optimization: Exact geometry and enhanced sensitivity[J]. Structural and Multidisciplinary Optimization, 2009, 38: 53-70.
  • 8COTTRELL J A, HUGHES T J R, BAZILEVS Y. Isogeometric analysis: Toward integration of CAD and FEA[M]. New York: Wiley, 2009.
  • 9KIM H J, SEO Y D, YOUN S K. Isogeometric analysis for trimmed CAD surfaces[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198 : 2982-2995.
  • 10KIM H J, SEO Y D, YOUN S K. Isogeometric analysis with trimming technique for problems of arbitrary complex topology[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199: 2796-2812.

共引文献24

同被引文献26

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部