期刊文献+

HLL-HLLC格式的构造与应用研究 被引量:6

Construction and application research of HLL-HLLC scheme
全文增补中
导出
摘要 HLLC格式是一种单调高分辨率格式,能够精确捕捉激波、接触间断和稀疏波,在可压缩流动中具有很高的应用价值;HLL格式相较于HLLC格式,抹平了接触间断,具有较大的数值耗散。然而,数值计算表明,在低马赫数和跨声速计算中表现较好的HLLC格式,在高马赫数强激波附近出现了激波不稳定现象。本文意图通过研究HLLC和HLL格式的数学性质,构造出一种适合更大马赫数范围的HLL-HLLC格式。新格式在较低马赫数下表现出HLLC的性质,是一种低耗散的格式;在高马赫数时具有HLL格式的性质,能够克服激波不稳定现象。通过对高超声速双楔流动、超声速后台阶流动和高超声速钝头体流动数值模拟证明了本文构造格式克服激波不稳定现象的有效性和鲁棒性。 HLLC is one kind of schemes which resolve shock,contact,and rarefaction waves exactly and has high value of application in compressible fluid simulation.HLL scheme cannot deal with the contact and shear waves accurately,thus it has much more dissipation compared with the HLLC scheme.However,numerical tests have illustrated that HLLC scheme may suffer from shock instability phenomena in the vicinity of strong shock waves while it performs well in low speed and subsonic flow.HLL-HLLC scheme which is suitable for a larger range of flow is proposed through mathematical analyses of HLLC and HLL scheme. The new proposed scheme indicates the property of HLLC which has low order dissipation in low speed flow and can overcome the shortcoming of shock instability phenomena in high speed flow.The effectiveness and robustness of the proposed scheme free from shock instability phenomena is demonstrated through three numerical simulations:hypersonic flow on double wedge configuration、supersonic flow over backward-facing step and hypersonic flow over blunt body.
出处 《空气动力学学报》 CSCD 北大核心 2014年第1期116-122,135,共8页 Acta Aerodynamica Sinica
关键词 HLL HLLC 高分辨率格式 可压缩流 激波不稳定 HLL HLLC high resolution method compressible flow shock instability
  • 相关文献

参考文献1

共引文献2

同被引文献45

  • 1孙宇涛,任玉新.求解多维欧拉方程的二阶旋转输运格式[J].空气动力学学报,2005,23(3):326-329. 被引量:4
  • 2阎超,禹建军,李君哲.热流CFD计算中格式和网格效应若干问题研究[J].空气动力学学报,2006,24(1):125-130. 被引量:51
  • 3贺立新,张来平,张涵信.任意单元间断Galerkin有限元计算方法研究[J].空气动力学学报,2007,25(2):157-162. 被引量:15
  • 4DENG Xiaogang,Maekawa H.Compact high-order accurate nonlinear schemes[J].Journal of Computational Physics,1997,130(1):77-91.
  • 5Godunov S K.A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations[J].Matematicheskii Sbornik,1959,47(89):271-306.
  • 6Harten A,Engquist B,Stanley O,et al.Uniformly high order accurate essentially non-oscillatory schemes[J].Journal of Computational Physics,1987,71(2):231-323.
  • 7Van Leer B.Towards the ultimate conservation difference scheme V:a second-order sequel to Godunov's method[J].Journal of Computational Physics,1979,32(1):101-136.
  • 8LIU Xudong,Osher S,Chan T F.Weighted essentially non-oscillatory schemes[J].Journal of Computational Physics,1994,115(1):200-212.
  • 9Kim K H,Kim C G.Accurate,efficient and monotonic numerical methods for multi-dimensional compressible flows:Part Ⅱ multi-dimensional limiting process[J].Journal of Computational Physics,2005,208(2):570-615.
  • 10Gerlinger P.High-order multi-dimensional limiting for turbulent flows and combustion[R].AIAA 2011-296,2011.

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部