摘要
We study the existence and uniqueness problem for the nonhomogeneous pressureless Euler system with the initial density being a Radon measure. Our uniqueness result is obtained in the same space as the existence theorem. Besides, by counterexample we prove that Huang-Wang’s energy condition is also necessary for our nonhomogeneous system.
We study the existence and uniqueness problem for the nonhomogeneous pressureless Euler system with the initial density being a Radon measure. Our uniqueness result is obtained in the same space as the existence theorem. Besides, by counterexample we prove that Huang-Wang's energy condition is also necessary for our nonhomogeneous system.