提出了一种基于双层双向长短时记忆网络(bi-directional long short term memory,BiLSTM)和自注意力(self-attention)机制的药物-药物相互作用(drug-drug interactions,DDIs)预测方法SA-BiLSTM。首先,利用FP3指纹、MACCS指纹、Pubchem...提出了一种基于双层双向长短时记忆网络(bi-directional long short term memory,BiLSTM)和自注意力(self-attention)机制的药物-药物相互作用(drug-drug interactions,DDIs)预测方法SA-BiLSTM。首先,利用FP3指纹、MACCS指纹、Pubchem指纹和PaDEL分子描述符对药物特征信息进行提取。其次,使用套索回归(least absolute shrinkage and selection operator,Lasso)方法消除对分类无关的特征,并利用重复编辑最近邻(repeated edited nearest neighbors,RENN)方法对数据进行平衡处理,得到最优特征向量。最后,将最优特征向量输入结合自注意力机制和双向长短时记忆网络的分类器预测DDIs。基于五折交叉验证,同时与其它预测方法进行比较,本工作所提出的方法在两个数据集上获得较高的预测准确率。为了综合评价SA-BiLSTM的性能,对药物-药物相互作用网络进行验证。实验结果表明,SA-BiLSTM表现出优秀的预测能力,可以为DDIs的预测提供一种新的思路。展开更多
单细胞多组学测序正在广泛应用于生物医学研究中,并产生大量的多样性组学数据。然而原始的单细胞多组学数据包含多种类型的测序噪声和冗余信息,对后续生物医疗层面的分析造成困难。现有的降噪方法主要依赖于单一的数据分布假设,并针对...单细胞多组学测序正在广泛应用于生物医学研究中,并产生大量的多样性组学数据。然而原始的单细胞多组学数据包含多种类型的测序噪声和冗余信息,对后续生物医疗层面的分析造成困难。现有的降噪方法主要依赖于单一的数据分布假设,并针对性的处理单个组学数据,这对模型联合处理不同组学数据造成极大地限制。本研究提出一种使用单细胞多组学数据降噪的分析方法,称为scMAED(single-cell multi-omics data via a multi-head autoencoder network to denoising)。模型在多头自动编码器网络中添加了分类解码器,以无监督的方式来最大程度的去除数据噪声。首先,使用两个编码器独立学习多组学数据的内部特征,并联合输出的低维特征进行共同解码。其次,分类解码器不做任何数据分布假设,通过使用预测的细胞簇标签来反馈数据信息,以最大限度的去除复杂噪声。最后,使用主成分分析和t-SNE进行可视化。本文基于模拟数据集和真实的小鼠数据集对模型进行性能评估,结果显示sc-MAED在降噪效果上优于实验中的对比方法,并能够极大的改善单细胞多组学数据的质量。展开更多
文摘提出了一种基于双层双向长短时记忆网络(bi-directional long short term memory,BiLSTM)和自注意力(self-attention)机制的药物-药物相互作用(drug-drug interactions,DDIs)预测方法SA-BiLSTM。首先,利用FP3指纹、MACCS指纹、Pubchem指纹和PaDEL分子描述符对药物特征信息进行提取。其次,使用套索回归(least absolute shrinkage and selection operator,Lasso)方法消除对分类无关的特征,并利用重复编辑最近邻(repeated edited nearest neighbors,RENN)方法对数据进行平衡处理,得到最优特征向量。最后,将最优特征向量输入结合自注意力机制和双向长短时记忆网络的分类器预测DDIs。基于五折交叉验证,同时与其它预测方法进行比较,本工作所提出的方法在两个数据集上获得较高的预测准确率。为了综合评价SA-BiLSTM的性能,对药物-药物相互作用网络进行验证。实验结果表明,SA-BiLSTM表现出优秀的预测能力,可以为DDIs的预测提供一种新的思路。
文摘单细胞多组学测序正在广泛应用于生物医学研究中,并产生大量的多样性组学数据。然而原始的单细胞多组学数据包含多种类型的测序噪声和冗余信息,对后续生物医疗层面的分析造成困难。现有的降噪方法主要依赖于单一的数据分布假设,并针对性的处理单个组学数据,这对模型联合处理不同组学数据造成极大地限制。本研究提出一种使用单细胞多组学数据降噪的分析方法,称为scMAED(single-cell multi-omics data via a multi-head autoencoder network to denoising)。模型在多头自动编码器网络中添加了分类解码器,以无监督的方式来最大程度的去除数据噪声。首先,使用两个编码器独立学习多组学数据的内部特征,并联合输出的低维特征进行共同解码。其次,分类解码器不做任何数据分布假设,通过使用预测的细胞簇标签来反馈数据信息,以最大限度的去除复杂噪声。最后,使用主成分分析和t-SNE进行可视化。本文基于模拟数据集和真实的小鼠数据集对模型进行性能评估,结果显示sc-MAED在降噪效果上优于实验中的对比方法,并能够极大的改善单细胞多组学数据的质量。