为了实时、准确地提取作物行基准线,提出了一种将边缘检测和扫描滤波(Boundary detection and scan-filter,BDSF)相结合的基准线提取方法。首先对RGB颜色空间采用G-R颜色特征因子进行图像灰度化,再采用最大类间方差法(OSTU)对灰度图像...为了实时、准确地提取作物行基准线,提出了一种将边缘检测和扫描滤波(Boundary detection and scan-filter,BDSF)相结合的基准线提取方法。首先对RGB颜色空间采用G-R颜色特征因子进行图像灰度化,再采用最大类间方差法(OSTU)对灰度图像进行分割,得到二值化图像,获取较好的作物信息。然后分别对图像的底端和顶端部分进行垂直投影,获取作物行的位置,形成一个包含作物行直线的条形框;在这个条形框内,再用等面积的小条形框对图像进行扫描并统计有效点的个数。最后根据扫描的结果来提取导航线。试验结果表明,对比Hough算法和最小二乘法(Least square method,LSM),BDSF算法处理一幅分辨率为640像素×480像素的图像,平均耗时为67 ms,与LSM算法耗时相当,精度接近Hough算法;并且在杂草和株数稀缺情况下具有良好的适应性,能够快速准确地提取作物行基准线。展开更多