With the aim to further improve the mechanical properties of Mg-A1-RE-based alloy, Mg-3.0Al-1.8Ce-0.3Y-0.2Mn alloy was prepared by high-pressure die-casting technique. The microstructure, thermal stability of intermet...With the aim to further improve the mechanical properties of Mg-A1-RE-based alloy, Mg-3.0Al-1.8Ce-0.3Y-0.2Mn alloy was prepared by high-pressure die-casting technique. The microstructure, thermal stability of intermetallic phases and mechanical properties were investigated. The results show that the alloy is composed of fine primary a-Mg dendrites and eutectic in the interdendritic regions. The intermetallic phases in eutectic are Aln(Ce,Y)3 and A12(Ce,Y) with the former being the dominant one. The thermal stability of Al11(ce,Y)3 is conditioned. It is basically stable at temperature up to 200℃ within 800 h, while most of the Al11(Ce,Y)3 intermetallics transform to A12(Ce,Y) at higher temperature of 450 ℃ for 800 h. The alloy exhibits remarkably improved strength both at room temperature and 200℃, which is mainly attributed to the reinforcement of dendrite boundaries with Alll(Ce,Y)3 intermetallics, small dendritic arm spacing effect as well as the solid solution strengthening with Y element.展开更多
Rapid path planner plays an important role in autonomous ground vehicle (AGV) operation. Depending on the non-holonomic kinematics constraints of AGV, its path planning problem is discussed. Since rapidly-exploring ...Rapid path planner plays an important role in autonomous ground vehicle (AGV) operation. Depending on the non-holonomic kinematics constraints of AGV, its path planning problem is discussed. Since rapidly-exploring random tree (RRT) can directly take non-holonomic constraints into consideration, it is selected to solve this problem. By applying extra constraints on the movement, the generation of new configuration in RRT algorithm is simplified and accelerated. With section collision detection method applied, collision detection within the planer becomes more accurate and efficient. Then a new path planner is developed. This method complies with the non-holonomic constraints, avoids obstacles effectively and can be rapidly carried out while the vehicle is running. Simulation shows that this path planner can complete path planning in less than 0.5 s for a 170 mx 170 m area with moderate obstacle complexity.展开更多
基金Project (HEUCFR1128) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (2010AA4BE031)supported by the Key Project of Science and Technology of Harbin City,China+1 种基金Projects (20100471015,20100471046) supported by the China Postdoctoral Science FoundationProject (LBH-Z09217) supported by the Heilongjiang Postdoctorial Fund,China
文摘With the aim to further improve the mechanical properties of Mg-A1-RE-based alloy, Mg-3.0Al-1.8Ce-0.3Y-0.2Mn alloy was prepared by high-pressure die-casting technique. The microstructure, thermal stability of intermetallic phases and mechanical properties were investigated. The results show that the alloy is composed of fine primary a-Mg dendrites and eutectic in the interdendritic regions. The intermetallic phases in eutectic are Aln(Ce,Y)3 and A12(Ce,Y) with the former being the dominant one. The thermal stability of Al11(ce,Y)3 is conditioned. It is basically stable at temperature up to 200℃ within 800 h, while most of the Al11(Ce,Y)3 intermetallics transform to A12(Ce,Y) at higher temperature of 450 ℃ for 800 h. The alloy exhibits remarkably improved strength both at room temperature and 200℃, which is mainly attributed to the reinforcement of dendrite boundaries with Alll(Ce,Y)3 intermetallics, small dendritic arm spacing effect as well as the solid solution strengthening with Y element.
文摘Rapid path planner plays an important role in autonomous ground vehicle (AGV) operation. Depending on the non-holonomic kinematics constraints of AGV, its path planning problem is discussed. Since rapidly-exploring random tree (RRT) can directly take non-holonomic constraints into consideration, it is selected to solve this problem. By applying extra constraints on the movement, the generation of new configuration in RRT algorithm is simplified and accelerated. With section collision detection method applied, collision detection within the planer becomes more accurate and efficient. Then a new path planner is developed. This method complies with the non-holonomic constraints, avoids obstacles effectively and can be rapidly carried out while the vehicle is running. Simulation shows that this path planner can complete path planning in less than 0.5 s for a 170 mx 170 m area with moderate obstacle complexity.