The efficient extraction of sodium(Na^(+))and lithium(Li^(+))from seawater and salt lakes is increasingly demanding due to their great application value in chemical industries.However,coexisting cations such as divale...The efficient extraction of sodium(Na^(+))and lithium(Li^(+))from seawater and salt lakes is increasingly demanding due to their great application value in chemical industries.However,coexisting cations such as divalent calcium(Ca^(2+))and magnesium(Mg^(2+))ions are at the subnanometer scale in diameter,similar to target monovalent ions,making ion separation a great challenge.Here,we propose a simple and fast secondary growth method for the preparation of MIL-53(Al)-NH_(2)membranes on the surface of anodic aluminum oxide.Such membranes contain angstrom-scale(~7Å)channels for the entrance of small monovalent ions and water molecules,endowing the selectivities for monovalent cations over divalent cations and water over salt molecules.The resulting high-connectivity MIL-53(Al)-NH_(2)membranes exhibit excellent ion separation performance(a selectivity of 121.42 for Na^(+)/Ca^(2+)and 93.81 for Li^(+)/Mg^(2+))and desalination performance(a water/salt selectivity of up to 5196).This work highlights metal–organic framework membranes as potential candidates for realizing ion separation and desalination in liquid treatment.展开更多
The present study is aimed to investigate the in vitro metabolic interconversion between baicalin(BG) and baicalein(B) in rat liver,kidney,intestine and bladder.BG and B were separately incubated with rat hepatic,...The present study is aimed to investigate the in vitro metabolic interconversion between baicalin(BG) and baicalein(B) in rat liver,kidney,intestine and bladder.BG and B were separately incubated with rat hepatic,renal,and intestinal microsomes,as well as bladder homogenates,for 30 min.The metabolites were identified and quantified by HPLC and metabolic kinetic parameters were obtained by fitting the data to the Michaelis-Menten equation.In hepatic microsomes,renal microsomes and bladder homogenates,but not in intestinal microsomes,BG was transformed into B,the hydrolysis metabolite of BG,with Km values being(44.65±6.01),(92.73±11.41),(74.60±3.68) μmol·L-1,respectively,and Vmax values being (12.32±0.56),(3.30±0.18),(5.93±0.12) μmol·min-1·g-1(protein),respectively.In incubations with hepatic,renal,and intestinal microsomes and bladder homogenates,B was also transformed into BG,the glucuronidation metabolite of B,with Km values being(67.46±10.49),(226.7±71.59),(177.3±35.85),and(18.33±2.53) μmol·L-1,respectively,and Vmax values being(14.74±0.97),(5.91±1.03),(38.14±3.60),and(1.22±0.05) μmol·min-1·g-1(protein),respectively.The results showed that the activity of UDP-glucuronosyltranferase(UGT) in intestinal microsomes was the highest among the four organs,and the activities of UGT were higher than that of glucuronidase(GUS) in hepatic,renal and intestinal microsomes,but the activity of GUS was higher than that of UGT in bladder homogenates.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(WK2060000030)USTC Research Funds of the Double First Class Initiative(YD2060002022)Major Science and Technology Innovation Projects in Shandong Province(2022CXGC020415).
文摘The efficient extraction of sodium(Na^(+))and lithium(Li^(+))from seawater and salt lakes is increasingly demanding due to their great application value in chemical industries.However,coexisting cations such as divalent calcium(Ca^(2+))and magnesium(Mg^(2+))ions are at the subnanometer scale in diameter,similar to target monovalent ions,making ion separation a great challenge.Here,we propose a simple and fast secondary growth method for the preparation of MIL-53(Al)-NH_(2)membranes on the surface of anodic aluminum oxide.Such membranes contain angstrom-scale(~7Å)channels for the entrance of small monovalent ions and water molecules,endowing the selectivities for monovalent cations over divalent cations and water over salt molecules.The resulting high-connectivity MIL-53(Al)-NH_(2)membranes exhibit excellent ion separation performance(a selectivity of 121.42 for Na^(+)/Ca^(2+)and 93.81 for Li^(+)/Mg^(2+))and desalination performance(a water/salt selectivity of up to 5196).This work highlights metal–organic framework membranes as potential candidates for realizing ion separation and desalination in liquid treatment.
文摘The present study is aimed to investigate the in vitro metabolic interconversion between baicalin(BG) and baicalein(B) in rat liver,kidney,intestine and bladder.BG and B were separately incubated with rat hepatic,renal,and intestinal microsomes,as well as bladder homogenates,for 30 min.The metabolites were identified and quantified by HPLC and metabolic kinetic parameters were obtained by fitting the data to the Michaelis-Menten equation.In hepatic microsomes,renal microsomes and bladder homogenates,but not in intestinal microsomes,BG was transformed into B,the hydrolysis metabolite of BG,with Km values being(44.65±6.01),(92.73±11.41),(74.60±3.68) μmol·L-1,respectively,and Vmax values being (12.32±0.56),(3.30±0.18),(5.93±0.12) μmol·min-1·g-1(protein),respectively.In incubations with hepatic,renal,and intestinal microsomes and bladder homogenates,B was also transformed into BG,the glucuronidation metabolite of B,with Km values being(67.46±10.49),(226.7±71.59),(177.3±35.85),and(18.33±2.53) μmol·L-1,respectively,and Vmax values being(14.74±0.97),(5.91±1.03),(38.14±3.60),and(1.22±0.05) μmol·min-1·g-1(protein),respectively.The results showed that the activity of UDP-glucuronosyltranferase(UGT) in intestinal microsomes was the highest among the four organs,and the activities of UGT were higher than that of glucuronidase(GUS) in hepatic,renal and intestinal microsomes,but the activity of GUS was higher than that of UGT in bladder homogenates.