心电(ECG)自动分类技术是心律不齐的一种重要辅助诊断手段。为提高动态心电异常心拍提取的准确率,提出一种基于Inception模块的CNN-BiLSTM房颤检测与心拍分类算法。首先将ECG信号分割成采样长度为1000个采样点的心拍片段,然后利用Incept...心电(ECG)自动分类技术是心律不齐的一种重要辅助诊断手段。为提高动态心电异常心拍提取的准确率,提出一种基于Inception模块的CNN-BiLSTM房颤检测与心拍分类算法。首先将ECG信号分割成采样长度为1000个采样点的心拍片段,然后利用Inception模块提取3种不同尺度的心电特征,再通过4层一维卷积神经网络(CNN)和两层双向长短期记忆神经网络(BiLSTM)来进一步提取心电特征,最后使用一层全连接网络和softmax函数实现降维和心拍分类。为了进一步提高分类准确率,采用小波降噪技术对原始ECG进行降噪。实验采用PhysioNet/Computing in Cardiology Challenge 2017数据库提供的数据,预处理后选取60000个心拍样本进行分类,并以准确率(Acc)和F1分数(F1-score)作为评判标准来评价模型性能。实验结果表明,所建立的模型针对3类心拍(正常、房颤、其它)的分类Acc为91.38%,F1-score为91.27%,比仅使用CNN-BiLSTM组合模型(Acc为86.61%,F1-score为86.68%)分别提高了4.77%和4.59%。因此,所提出的基于Inception模块的CNN-BiLSTM房颤检测与心拍分类算法比CNN-BiLSTM的组合模型有更好的分类效果。展开更多
文摘心电(ECG)自动分类技术是心律不齐的一种重要辅助诊断手段。为提高动态心电异常心拍提取的准确率,提出一种基于Inception模块的CNN-BiLSTM房颤检测与心拍分类算法。首先将ECG信号分割成采样长度为1000个采样点的心拍片段,然后利用Inception模块提取3种不同尺度的心电特征,再通过4层一维卷积神经网络(CNN)和两层双向长短期记忆神经网络(BiLSTM)来进一步提取心电特征,最后使用一层全连接网络和softmax函数实现降维和心拍分类。为了进一步提高分类准确率,采用小波降噪技术对原始ECG进行降噪。实验采用PhysioNet/Computing in Cardiology Challenge 2017数据库提供的数据,预处理后选取60000个心拍样本进行分类,并以准确率(Acc)和F1分数(F1-score)作为评判标准来评价模型性能。实验结果表明,所建立的模型针对3类心拍(正常、房颤、其它)的分类Acc为91.38%,F1-score为91.27%,比仅使用CNN-BiLSTM组合模型(Acc为86.61%,F1-score为86.68%)分别提高了4.77%和4.59%。因此,所提出的基于Inception模块的CNN-BiLSTM房颤检测与心拍分类算法比CNN-BiLSTM的组合模型有更好的分类效果。