车联网在智慧城市建设中扮演着不可或缺的角色,汽车不仅仅是交通工具,更是大数据时代信息采集和传输的重要载体.随着车辆采集的数据量飞速增长和人们隐私保护意识的增强,如何在车联网环境中确保用户数据安全,防止数据泄露,成为亟待解决...车联网在智慧城市建设中扮演着不可或缺的角色,汽车不仅仅是交通工具,更是大数据时代信息采集和传输的重要载体.随着车辆采集的数据量飞速增长和人们隐私保护意识的增强,如何在车联网环境中确保用户数据安全,防止数据泄露,成为亟待解决的难题.联邦学习采用“数据不动模型动”的方式,为保护用户隐私和实现良好性能提供了可行方案.然而,受限于采集设备、地域环境、个人习惯的差异,多台车辆采集的数据通常表现为非独立同分布(non-independent and identically distributed,non-IID)数据,而传统的联邦学习算法在non-IID数据环境中,其模型收敛速度较慢.针对这一挑战,提出了一种面向non-IID数据的车联网多阶段联邦学习机制,称为FedWO.第1阶段采用联邦平均算法,使得全局模型快速达到一个基本的模型准确度;第2阶段采用联邦加权多方计算,依据各车辆的数据特性计算其在全局模型中的权重,聚合后得到性能更优的全局模型,同时采用传输控制策略,减少模型传输带来的通信开销;第3阶段为个性化计算阶段,车辆利用各自的数据进行个性化学习,微调本地模型获得与本地数据更匹配的模型.实验采用了驾驶行为数据集进行实验评估,结果表明相较于传统方法,在non-IID数据场景下,FedWO机制保护了数据隐私,同时提高了算法的准确度.展开更多
文摘车联网在智慧城市建设中扮演着不可或缺的角色,汽车不仅仅是交通工具,更是大数据时代信息采集和传输的重要载体.随着车辆采集的数据量飞速增长和人们隐私保护意识的增强,如何在车联网环境中确保用户数据安全,防止数据泄露,成为亟待解决的难题.联邦学习采用“数据不动模型动”的方式,为保护用户隐私和实现良好性能提供了可行方案.然而,受限于采集设备、地域环境、个人习惯的差异,多台车辆采集的数据通常表现为非独立同分布(non-independent and identically distributed,non-IID)数据,而传统的联邦学习算法在non-IID数据环境中,其模型收敛速度较慢.针对这一挑战,提出了一种面向non-IID数据的车联网多阶段联邦学习机制,称为FedWO.第1阶段采用联邦平均算法,使得全局模型快速达到一个基本的模型准确度;第2阶段采用联邦加权多方计算,依据各车辆的数据特性计算其在全局模型中的权重,聚合后得到性能更优的全局模型,同时采用传输控制策略,减少模型传输带来的通信开销;第3阶段为个性化计算阶段,车辆利用各自的数据进行个性化学习,微调本地模型获得与本地数据更匹配的模型.实验采用了驾驶行为数据集进行实验评估,结果表明相较于传统方法,在non-IID数据场景下,FedWO机制保护了数据隐私,同时提高了算法的准确度.