叶面积指数(leaf area index,LAI)是表达农作物冠层结构的关键参数之一,准确获取LAI对于农作物长势监测、估产等研究具有非常重要的意义。由于地物空间复杂性、数据源的不同以及遥感反演模型的非线性,LAI的反演结果会存在尺度效应,因此...叶面积指数(leaf area index,LAI)是表达农作物冠层结构的关键参数之一,准确获取LAI对于农作物长势监测、估产等研究具有非常重要的意义。由于地物空间复杂性、数据源的不同以及遥感反演模型的非线性,LAI的反演结果会存在尺度效应,因此需要进行尺度转换研究。理想的升尺度转换应该只是数据空间分辨率的降低,而数据内在信息应保存到低分辨率中。最大熵(maximum entropy,Max Ent)模型是基于多种环境因子的广义学习模型,对分析因子的空间分布具有较高的估算精度,因此,该研究利用最大熵模型进行玉米冠层LAI升尺度方法研究,从而将野外实测的LAI点数据扩展到空间分辨率为30 m的面数据,所使用的数据源是Landsat8 OLI遥感影像、气象数据和野外样点上测量的LAI数据。研究结果表明:利用最大熵模型升尺度转换结果与实测LAI相比,R2为0.601、RMSE为0.898,说明两者的相关性较高;由于玉米冠层叶片之间的相互遮挡,导致整体结果偏低,但偏低误差在可接受范围内。因此,Max Ent模型可用于农作物LAI点数据到面数据的升尺度转换。展开更多