在大气压介质阻挡放电的实际应用中,空气介质阻挡放电具有极其广泛的工业化应用前景。目前,空气均匀放电的获得仍比较困难,且诊断均匀性的依据缺乏可信的依据。文章采用粒子云网格法(Particle in Cell,PIC)与蒙特卡罗碰撞(Monte Carlo C...在大气压介质阻挡放电的实际应用中,空气介质阻挡放电具有极其广泛的工业化应用前景。目前,空气均匀放电的获得仍比较困难,且诊断均匀性的依据缺乏可信的依据。文章采用粒子云网格法(Particle in Cell,PIC)与蒙特卡罗碰撞(Monte Carlo Collision,MCC)方法模拟了放电过程中粒子的运动情况,研究大气压下空气介质阻挡放电的发展过程,然后讨论介质厚度、电源频率对形成均匀放电的影响,并研究这两种因素对等离子体密度的影响。模拟结果表明:介质厚度在d≥1.5 mm时可获得没有放电细丝的电流波形;电源频率高于2.5 kHz时,放电细丝是难以避免的。在能够形成均匀放电的条件下,将介质厚度适当的调整在1.5 mm附近,提高电源频率,将产生更高的等离子体密度。展开更多
为了研究同轴线筒电极在大气压下空气中的电气参数和放电机理,利用有限元软件Comsol的等离子体模块,建立了大气压空气中一维线筒电极放电的等离子体模型,并对放电过程进行求解,得到放电过程中气隙的电场强度及电子密度随时间变化的图形...为了研究同轴线筒电极在大气压下空气中的电气参数和放电机理,利用有限元软件Comsol的等离子体模块,建立了大气压空气中一维线筒电极放电的等离子体模型,并对放电过程进行求解,得到放电过程中气隙的电场强度及电子密度随时间变化的图形,放电过程中电子密度高达1014m-3,此时对应的放电电流为毫安级。在大气压空气中对线筒电极也进行了放电实验,在不同的外加电压下,测出线筒电极的放电电流分别约为1 m A和5 m A,仿真结果与实验数据相吻合。展开更多
文摘在大气压介质阻挡放电的实际应用中,空气介质阻挡放电具有极其广泛的工业化应用前景。目前,空气均匀放电的获得仍比较困难,且诊断均匀性的依据缺乏可信的依据。文章采用粒子云网格法(Particle in Cell,PIC)与蒙特卡罗碰撞(Monte Carlo Collision,MCC)方法模拟了放电过程中粒子的运动情况,研究大气压下空气介质阻挡放电的发展过程,然后讨论介质厚度、电源频率对形成均匀放电的影响,并研究这两种因素对等离子体密度的影响。模拟结果表明:介质厚度在d≥1.5 mm时可获得没有放电细丝的电流波形;电源频率高于2.5 kHz时,放电细丝是难以避免的。在能够形成均匀放电的条件下,将介质厚度适当的调整在1.5 mm附近,提高电源频率,将产生更高的等离子体密度。
文摘为了研究同轴线筒电极在大气压下空气中的电气参数和放电机理,利用有限元软件Comsol的等离子体模块,建立了大气压空气中一维线筒电极放电的等离子体模型,并对放电过程进行求解,得到放电过程中气隙的电场强度及电子密度随时间变化的图形,放电过程中电子密度高达1014m-3,此时对应的放电电流为毫安级。在大气压空气中对线筒电极也进行了放电实验,在不同的外加电压下,测出线筒电极的放电电流分别约为1 m A和5 m A,仿真结果与实验数据相吻合。