为缓解旅游领域知识分散、信息碎片化的问题,提出一种基于ChatGLM(chat generative language model)和提示微调的实体关系抽取模型ChatGLM-ppt(ChatGLM with prompt and p-tuning)。该模型借助ChatGLM以对话形式完成实体关系抽取任务,...为缓解旅游领域知识分散、信息碎片化的问题,提出一种基于ChatGLM(chat generative language model)和提示微调的实体关系抽取模型ChatGLM-ppt(ChatGLM with prompt and p-tuning)。该模型借助ChatGLM以对话形式完成实体关系抽取任务,并通过P-Tuning v2微调和添加提示模板的方法应对实体关系抽取中错误传播、实体冗余和关系重叠等问题。实验建立在自建的旅游领域数据集上,结果表明:在旅游领域实体关系抽取问题上ChatGLM-ppt模型F 1为92.19%,在处理重叠关系问题中F 1均大于90%,优于目前主流的实体关系抽取模型,证明该模型可有效提高实体关系抽取的准确率。进一步运用Neo4j图数据库构建旅游知识图谱,整合分散的旅游信息资源,对促进旅游业的数字化转型和智能化发展具有一定的参考意义。展开更多
文摘为缓解旅游领域知识分散、信息碎片化的问题,提出一种基于ChatGLM(chat generative language model)和提示微调的实体关系抽取模型ChatGLM-ppt(ChatGLM with prompt and p-tuning)。该模型借助ChatGLM以对话形式完成实体关系抽取任务,并通过P-Tuning v2微调和添加提示模板的方法应对实体关系抽取中错误传播、实体冗余和关系重叠等问题。实验建立在自建的旅游领域数据集上,结果表明:在旅游领域实体关系抽取问题上ChatGLM-ppt模型F 1为92.19%,在处理重叠关系问题中F 1均大于90%,优于目前主流的实体关系抽取模型,证明该模型可有效提高实体关系抽取的准确率。进一步运用Neo4j图数据库构建旅游知识图谱,整合分散的旅游信息资源,对促进旅游业的数字化转型和智能化发展具有一定的参考意义。