针对当前大多数命名实体识别(NER)模型只使用字符级信息编码且缺乏对文本层次信息提取的问题,提出一种融合多粒度语言知识与层级信息的中文NER(CNER)模型(CMH)。首先,使用经过多粒度语言知识预训练的模型编码文本,使模型能够同时捕获文...针对当前大多数命名实体识别(NER)模型只使用字符级信息编码且缺乏对文本层次信息提取的问题,提出一种融合多粒度语言知识与层级信息的中文NER(CNER)模型(CMH)。首先,使用经过多粒度语言知识预训练的模型编码文本,使模型能够同时捕获文本的细粒度和粗粒度语言信息,从而更好地表征语料;其次,使用ON-LSTM(Ordered Neurons Long Short-Term Memory network)模型提取层级信息,利用文本本身的层级结构信息增强编码间的时序关系;最后,在模型的解码端结合文本的分词信息,并将实体识别问题转化为表格填充问题,以更好地解决实体重叠问题并获得更准确的实体识别结果。同时,为解决当前模型在不同领域中的迁移能力较差的问题,提出通用实体识别的理念,通过筛选多领域的通用实体类型,构建一套提升模型在多领域中的泛化能力的通用NER数据集MDNER(Multi-Domain NER dataset)。为验证所提模型的效果,在数据集Resume、Weibo、MSRA上进行实验,与MECT(Multi-metadata Embedding based Cross-Transformer)模型相比,F1值分别提高了0.94、4.95和1.58个百分点。为了验证所提模型在多领域中的实体识别效果,在MDNER上进行实验,F1值达到了95.29%。实验结果表明,多粒度语言知识预训练、文本层级结构信息提取和高效指针解码器对模型的性能提升至关重要。展开更多
针对学术论文在学科领域内进行层次标签分类问题,提出了一种基于知识增强的语义表示与图注意力网络的文本层次标签分类(text hierarchical label classification based on enhanced representation through knowledge integration and g...针对学术论文在学科领域内进行层次标签分类问题,提出了一种基于知识增强的语义表示与图注意力网络的文本层次标签分类(text hierarchical label classification based on enhanced representation through knowledge integration and graph attention networks, GETHLC)模型。首先,通过层次标签抽取模块提取学科领域下层次标签的结构特征,并通过预训练模型对学术论文的摘要、标题和抽取后的层次标签结构特征进行嵌入;然后,在分类阶段基于层次标签的结构分层构造层次分类器,将学术论文逐层分类至最符合的类别中。在大规模中文科学文献数据集CSL上进行的实验结果表明,与基准的ERNIE模型相比,GETHLC模型的准确率、召回率和F1值分别提升了5.78、4.31和5.02百分点。展开更多
为有效利用PDF文献中的非结构化文本数据,面向费托合成催化材料领域文献,设计了关键信息抽取流水线从PDF文献中抽取表格及其相应注释等关键信息。以微分二值化网络(differentiable binarization network, DBNet)为基准模型,通过引入自...为有效利用PDF文献中的非结构化文本数据,面向费托合成催化材料领域文献,设计了关键信息抽取流水线从PDF文献中抽取表格及其相应注释等关键信息。以微分二值化网络(differentiable binarization network, DBNet)为基准模型,通过引入自适应空间注意力(adaptive spatial attention, ASA)模块,提出了DB-ASA文本检测模型,提高了检测精度。采用单视觉文本识别模型(scene text recognition with a single visual model, SVTR)进行文本识别,结合领域字典文件在自建数据集上对模型进行微调,文本识别准确率可达93.87%。展开更多
文摘针对当前大多数命名实体识别(NER)模型只使用字符级信息编码且缺乏对文本层次信息提取的问题,提出一种融合多粒度语言知识与层级信息的中文NER(CNER)模型(CMH)。首先,使用经过多粒度语言知识预训练的模型编码文本,使模型能够同时捕获文本的细粒度和粗粒度语言信息,从而更好地表征语料;其次,使用ON-LSTM(Ordered Neurons Long Short-Term Memory network)模型提取层级信息,利用文本本身的层级结构信息增强编码间的时序关系;最后,在模型的解码端结合文本的分词信息,并将实体识别问题转化为表格填充问题,以更好地解决实体重叠问题并获得更准确的实体识别结果。同时,为解决当前模型在不同领域中的迁移能力较差的问题,提出通用实体识别的理念,通过筛选多领域的通用实体类型,构建一套提升模型在多领域中的泛化能力的通用NER数据集MDNER(Multi-Domain NER dataset)。为验证所提模型的效果,在数据集Resume、Weibo、MSRA上进行实验,与MECT(Multi-metadata Embedding based Cross-Transformer)模型相比,F1值分别提高了0.94、4.95和1.58个百分点。为了验证所提模型在多领域中的实体识别效果,在MDNER上进行实验,F1值达到了95.29%。实验结果表明,多粒度语言知识预训练、文本层级结构信息提取和高效指针解码器对模型的性能提升至关重要。
文摘针对学术论文在学科领域内进行层次标签分类问题,提出了一种基于知识增强的语义表示与图注意力网络的文本层次标签分类(text hierarchical label classification based on enhanced representation through knowledge integration and graph attention networks, GETHLC)模型。首先,通过层次标签抽取模块提取学科领域下层次标签的结构特征,并通过预训练模型对学术论文的摘要、标题和抽取后的层次标签结构特征进行嵌入;然后,在分类阶段基于层次标签的结构分层构造层次分类器,将学术论文逐层分类至最符合的类别中。在大规模中文科学文献数据集CSL上进行的实验结果表明,与基准的ERNIE模型相比,GETHLC模型的准确率、召回率和F1值分别提升了5.78、4.31和5.02百分点。
文摘为有效利用PDF文献中的非结构化文本数据,面向费托合成催化材料领域文献,设计了关键信息抽取流水线从PDF文献中抽取表格及其相应注释等关键信息。以微分二值化网络(differentiable binarization network, DBNet)为基准模型,通过引入自适应空间注意力(adaptive spatial attention, ASA)模块,提出了DB-ASA文本检测模型,提高了检测精度。采用单视觉文本识别模型(scene text recognition with a single visual model, SVTR)进行文本识别,结合领域字典文件在自建数据集上对模型进行微调,文本识别准确率可达93.87%。