磁制冷技术的发展取决于磁热效应材料的研究进展.其中,具有各向异性磁热效应的材料可以用于旋转磁制冷技术,有利于制冷装置的大幅度简化.本文研究了快淬带Ho Co Si化合物的磁性、磁热效应及磁各向异性.在Tt=5.7 K以下的低温,Ho Co Si快...磁制冷技术的发展取决于磁热效应材料的研究进展.其中,具有各向异性磁热效应的材料可以用于旋转磁制冷技术,有利于制冷装置的大幅度简化.本文研究了快淬带Ho Co Si化合物的磁性、磁热效应及磁各向异性.在Tt=5.7 K以下的低温,Ho Co Si快淬带铁磁和螺旋磁性共存,随着温度的升高,在TC=13.7 K处发生了铁磁(FM)到顺磁(PM)的二级相变.XRD和SEM都显示出Ho Co Si具有择优取向.为了获得大的磁热效应并确定择优取向对磁性和磁热效应的影响,对10 m/s下Ho Co Si快淬带在磁场平行和垂直织构方向时居里温度附近的等温磁化曲线进行分析,并计算了对应的磁熵变和磁制冷能力.在外磁场μ0H=0—5 T的磁场变化时,磁场平行和垂直织构方向的最大磁熵变值–ΔSM分别为22 J/(kg·K)和12 J/(kg·K);制冷能力RC(RCP)分别为360(393.8)J/kg和160(254.4)J/kg,表明10 m/s的Ho Co Si快淬带具有大的磁热效应和明显的磁各向异性,有望实现旋转样品磁制冷技术.展开更多
文摘磁制冷技术的发展取决于磁热效应材料的研究进展.其中,具有各向异性磁热效应的材料可以用于旋转磁制冷技术,有利于制冷装置的大幅度简化.本文研究了快淬带Ho Co Si化合物的磁性、磁热效应及磁各向异性.在Tt=5.7 K以下的低温,Ho Co Si快淬带铁磁和螺旋磁性共存,随着温度的升高,在TC=13.7 K处发生了铁磁(FM)到顺磁(PM)的二级相变.XRD和SEM都显示出Ho Co Si具有择优取向.为了获得大的磁热效应并确定择优取向对磁性和磁热效应的影响,对10 m/s下Ho Co Si快淬带在磁场平行和垂直织构方向时居里温度附近的等温磁化曲线进行分析,并计算了对应的磁熵变和磁制冷能力.在外磁场μ0H=0—5 T的磁场变化时,磁场平行和垂直织构方向的最大磁熵变值–ΔSM分别为22 J/(kg·K)和12 J/(kg·K);制冷能力RC(RCP)分别为360(393.8)J/kg和160(254.4)J/kg,表明10 m/s的Ho Co Si快淬带具有大的磁热效应和明显的磁各向异性,有望实现旋转样品磁制冷技术.