由于MUSIC(MUltiple SIgnal Classification)算法需要大量的乘法运算和三角函数求值,导致其实时处理能力较弱。为此,该文首先对均匀线阵和均匀圆阵的阵列结构进行分析,提取导向矢量的一些性质。然后,利用Hermite矩阵的性质对复数乘法进...由于MUSIC(MUltiple SIgnal Classification)算法需要大量的乘法运算和三角函数求值,导致其实时处理能力较弱。为此,该文首先对均匀线阵和均匀圆阵的阵列结构进行分析,提取导向矢量的一些性质。然后,利用Hermite矩阵的性质对复数乘法进行分解,再组建两个实值向量以减少乘法运算次数。最后,利用导向矢量的性质提出一种基于查表的新算法。新算法既没有三角函数求值运算,又不需要大量的存储空间。仿真实验结果表明新算法在没有改变MUSIC算法谱估计的效果的前提下,将MUSIC算法的运算速率提高了50倍以上。因此,新算法具有广阔的应用前景。展开更多
文摘由于MUSIC(MUltiple SIgnal Classification)算法需要大量的乘法运算和三角函数求值,导致其实时处理能力较弱。为此,该文首先对均匀线阵和均匀圆阵的阵列结构进行分析,提取导向矢量的一些性质。然后,利用Hermite矩阵的性质对复数乘法进行分解,再组建两个实值向量以减少乘法运算次数。最后,利用导向矢量的性质提出一种基于查表的新算法。新算法既没有三角函数求值运算,又不需要大量的存储空间。仿真实验结果表明新算法在没有改变MUSIC算法谱估计的效果的前提下,将MUSIC算法的运算速率提高了50倍以上。因此,新算法具有广阔的应用前景。