Based on the refraction-diffraction theory of irregular waves in the waters of slowly-varying currents and depths, and the generation dissipation theory of wind wave, a model for nonlinear irregular waves in coastal a...Based on the refraction-diffraction theory of irregular waves in the waters of slowly-varying currents and depths, and the generation dissipation theory of wind wave, a model for nonlinear irregular waves in coastal area is developed. In light of the specific conditions of coastal wave character and engineering application, a practical mathematical model for the nonlinear irregular waves is presented, with directional spectrum in coastal area. Coast effect, refraction, whitecapping, bottom friction, current, wind and nonlinear action are considered in this model. The numerical methods and schemes for wave refraction ray, energy conservation of propagation, energy balance of the generation and dissipation of wind waves have been studied. Finally, the model is used for the directional wave spectrum computation in the Daya Bay. Compared with the measured data with 956 wave bouys in the Daya Bay, the model results are in good agreement with the measured results.展开更多
基金Chinese Academy of Sciences:the"Ninth Five-Year Plan"important resourcesenvironment research project"pipeline in seabed"(No.KZ951-A1-405)alse by the Chinese"Ninth Five-Year Plan"strategic research project"examinacion in Nansha Islands"(N
文摘Based on the refraction-diffraction theory of irregular waves in the waters of slowly-varying currents and depths, and the generation dissipation theory of wind wave, a model for nonlinear irregular waves in coastal area is developed. In light of the specific conditions of coastal wave character and engineering application, a practical mathematical model for the nonlinear irregular waves is presented, with directional spectrum in coastal area. Coast effect, refraction, whitecapping, bottom friction, current, wind and nonlinear action are considered in this model. The numerical methods and schemes for wave refraction ray, energy conservation of propagation, energy balance of the generation and dissipation of wind waves have been studied. Finally, the model is used for the directional wave spectrum computation in the Daya Bay. Compared with the measured data with 956 wave bouys in the Daya Bay, the model results are in good agreement with the measured results.