由于良好的率失真表现,新一代视频压缩标准HEVC(High Efficiency Video Coding)得到了越来越多终端设备的支持。然而目前仍有大量的H.264码流存在,因此H.264到HEVC的高效视频转码具有重要的实际意义。实现H.264到HEVC转码最简单的方法,...由于良好的率失真表现,新一代视频压缩标准HEVC(High Efficiency Video Coding)得到了越来越多终端设备的支持。然而目前仍有大量的H.264码流存在,因此H.264到HEVC的高效视频转码具有重要的实际意义。实现H.264到HEVC转码最简单的方法,是将H.264解码端和HEVC编码端直接级联起来。由于HEVC编码过程的复杂度较高,这种方法的转码时间较长。针对H.264到HEVC转码耗时的问题,文中提出一种基于深度学习的方法来预测HEVC的CTU(Coding Tree Unit)块划分结果,从而避开HEVC对CTU所有块划分情况循环遍历以寻找率失真最优划分结构的过程,实现H.264到HEVC的快速转码。首先建立了一个H.264到HEVC转码的大型数据库,为训练深度学习模型提供数据保障;随后对H.264压缩域特征和HEVC的CTU块划分模式进行相关性分析,并发掘了CTU块划分模式在时序上的相似性,进而提出基于时间递归神经网络LSTM(Long Short-Term Memory)的三级分类器来预测HEVC的CTU划分。实验结果表明,与直接级联转码器相比,文中提出的H.264到HEVC快速转码算法实现了60%的时间节省,同时峰值信噪比仅下降了0.039 dB,其性能胜过近年来的转码算法的性能。展开更多
文摘由于良好的率失真表现,新一代视频压缩标准HEVC(High Efficiency Video Coding)得到了越来越多终端设备的支持。然而目前仍有大量的H.264码流存在,因此H.264到HEVC的高效视频转码具有重要的实际意义。实现H.264到HEVC转码最简单的方法,是将H.264解码端和HEVC编码端直接级联起来。由于HEVC编码过程的复杂度较高,这种方法的转码时间较长。针对H.264到HEVC转码耗时的问题,文中提出一种基于深度学习的方法来预测HEVC的CTU(Coding Tree Unit)块划分结果,从而避开HEVC对CTU所有块划分情况循环遍历以寻找率失真最优划分结构的过程,实现H.264到HEVC的快速转码。首先建立了一个H.264到HEVC转码的大型数据库,为训练深度学习模型提供数据保障;随后对H.264压缩域特征和HEVC的CTU块划分模式进行相关性分析,并发掘了CTU块划分模式在时序上的相似性,进而提出基于时间递归神经网络LSTM(Long Short-Term Memory)的三级分类器来预测HEVC的CTU划分。实验结果表明,与直接级联转码器相比,文中提出的H.264到HEVC快速转码算法实现了60%的时间节省,同时峰值信噪比仅下降了0.039 dB,其性能胜过近年来的转码算法的性能。