The crystal structure and the superconductivity for samples Mg(B1-xCx)2 (0〈 x 〈0.09) prepared by a hybrid microwave synthesis have been investigated. The starting material B10C is also obtained by using the micr...The crystal structure and the superconductivity for samples Mg(B1-xCx)2 (0〈 x 〈0.09) prepared by a hybrid microwave synthesis have been investigated. The starting material B10C is also obtained by using the microwave method. The carbon can distribute uniformly in the Mg(B1-xCx)2 samples because boron and carbon are mixed on an atomic scale in the staring material B10C. The dependences of both lattice parameters and superconducting transition temperature Tc on carbon content accord with those reported in the literature. The upper critical field He2 at 20 K can be enhanced from about 4.3 T for x = 0 to 10 T for x = 0.05. The critical current density Jc of Mg(B0.95 C0.05)2 is 1.05×10^4 A/cm^2 at 20 K and 1 T.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos20271052 and 20571083)the National Basic Research Program of China(Grant No2006CB601004)
文摘The crystal structure and the superconductivity for samples Mg(B1-xCx)2 (0〈 x 〈0.09) prepared by a hybrid microwave synthesis have been investigated. The starting material B10C is also obtained by using the microwave method. The carbon can distribute uniformly in the Mg(B1-xCx)2 samples because boron and carbon are mixed on an atomic scale in the staring material B10C. The dependences of both lattice parameters and superconducting transition temperature Tc on carbon content accord with those reported in the literature. The upper critical field He2 at 20 K can be enhanced from about 4.3 T for x = 0 to 10 T for x = 0.05. The critical current density Jc of Mg(B0.95 C0.05)2 is 1.05×10^4 A/cm^2 at 20 K and 1 T.