为求解高维优化问题,提出基于反向学习和衰减因子的灰狼优化算法(grey wolf algorithm based on opposition learning and reduction factor,ORGWO).设计一种灰狼反向学习模型,模型考虑问题搜索边界信息和种群历史搜索信息,初始种群阶...为求解高维优化问题,提出基于反向学习和衰减因子的灰狼优化算法(grey wolf algorithm based on opposition learning and reduction factor,ORGWO).设计一种灰狼反向学习模型,模型考虑问题搜索边界信息和种群历史搜索信息,初始种群阶段增加反向学习,增强种群多样性.根据算法各个阶段不同特征引入衰减因子,平衡全局和局部勘探能力.选取8个高维函数和23个不同特征的优化函数对算法性能进行测试,进一步使用收敛性分析,寻优成功率,CPU时间,Wilcoxon秩和检验来评估改进算法,实验结果表明,ORGWO算法在求解高维问题上具有较好的精度,鲁棒性和更快的收敛速度.展开更多
为降低实际应用中由强未知干扰和仪器故障对观测造成的影响,减轻随机和未建模干扰对系统的侵蚀,从而提升系统在非高斯噪声环境下的状态估计精度,提高滤波器的鲁棒性能,提出了一种基于高斯-重尾切换分布的鲁棒卡尔曼滤波器(Gaussian-heav...为降低实际应用中由强未知干扰和仪器故障对观测造成的影响,减轻随机和未建模干扰对系统的侵蚀,从而提升系统在非高斯噪声环境下的状态估计精度,提高滤波器的鲁棒性能,提出了一种基于高斯-重尾切换分布的鲁棒卡尔曼滤波器(Gaussian-heavy-tailed switching distribution based robust Kalman filter,GHTSRKF)。首先,通过自适应学习高斯分布和一种重尾分布之间的切换概率将噪声建模为GHTS(Gaussian-heavy-tailed switching)分布,所设计的GHTS分布可以通过在线调整高斯分布和新的重尾分布之间的切换概率来对非平稳重尾噪声进行建模,具有虚拟协方差的高斯分布用于处理协方差矩阵不准确的高斯噪声。其次,引入两个分别服从Categorical分布与伯努利分布的辅助参数将GHTS分布表示为一个分层高斯形式,进一步利用变分贝叶斯方法推导了GHTSRKF。最后,利用一个仿真场景对几种不同的RKFs(robust Kalman filters)进行了对比验证。结果表明,所提出的GHTSRKF算法的估计精度对初始状态的选取不敏感,精度优于其他RKFs,它的RMSEs最接近噪声信息准确的KFTNC(KF with true noise covariances)的RMSEs(root mean square errors),且当系统与量测噪声是未知时变高斯噪声时,相比于现有的滤波器,GHTSRKF具有更好的估计性能,从而验证了GHTSRKF的有效性。展开更多
为提高对动力电池的荷电状态(state of charge, SOC)估算精度、动力电池的健康状态(state of health, SOH)对锂电池性能的影响,提出一种扩展卡尔曼滤波(extended kalman filtering, EKF)联合估算算法。根据现有的实验数据,分析锂电池特...为提高对动力电池的荷电状态(state of charge, SOC)估算精度、动力电池的健康状态(state of health, SOH)对锂电池性能的影响,提出一种扩展卡尔曼滤波(extended kalman filtering, EKF)联合估算算法。根据现有的实验数据,分析锂电池特性,构建二阶RC等效电路模型,并进行参数辨识,搭建MATLAB仿真平台联合EKF算法进行SOC估算,将仿真结果与真实数据进行对比,结果表明,EKF联合估算SOC比EKF估算SOC误差精度约高1.2%,且抗干扰能力更强。展开更多
文摘为求解高维优化问题,提出基于反向学习和衰减因子的灰狼优化算法(grey wolf algorithm based on opposition learning and reduction factor,ORGWO).设计一种灰狼反向学习模型,模型考虑问题搜索边界信息和种群历史搜索信息,初始种群阶段增加反向学习,增强种群多样性.根据算法各个阶段不同特征引入衰减因子,平衡全局和局部勘探能力.选取8个高维函数和23个不同特征的优化函数对算法性能进行测试,进一步使用收敛性分析,寻优成功率,CPU时间,Wilcoxon秩和检验来评估改进算法,实验结果表明,ORGWO算法在求解高维问题上具有较好的精度,鲁棒性和更快的收敛速度.
文摘为降低实际应用中由强未知干扰和仪器故障对观测造成的影响,减轻随机和未建模干扰对系统的侵蚀,从而提升系统在非高斯噪声环境下的状态估计精度,提高滤波器的鲁棒性能,提出了一种基于高斯-重尾切换分布的鲁棒卡尔曼滤波器(Gaussian-heavy-tailed switching distribution based robust Kalman filter,GHTSRKF)。首先,通过自适应学习高斯分布和一种重尾分布之间的切换概率将噪声建模为GHTS(Gaussian-heavy-tailed switching)分布,所设计的GHTS分布可以通过在线调整高斯分布和新的重尾分布之间的切换概率来对非平稳重尾噪声进行建模,具有虚拟协方差的高斯分布用于处理协方差矩阵不准确的高斯噪声。其次,引入两个分别服从Categorical分布与伯努利分布的辅助参数将GHTS分布表示为一个分层高斯形式,进一步利用变分贝叶斯方法推导了GHTSRKF。最后,利用一个仿真场景对几种不同的RKFs(robust Kalman filters)进行了对比验证。结果表明,所提出的GHTSRKF算法的估计精度对初始状态的选取不敏感,精度优于其他RKFs,它的RMSEs最接近噪声信息准确的KFTNC(KF with true noise covariances)的RMSEs(root mean square errors),且当系统与量测噪声是未知时变高斯噪声时,相比于现有的滤波器,GHTSRKF具有更好的估计性能,从而验证了GHTSRKF的有效性。
文摘为提高对动力电池的荷电状态(state of charge, SOC)估算精度、动力电池的健康状态(state of health, SOH)对锂电池性能的影响,提出一种扩展卡尔曼滤波(extended kalman filtering, EKF)联合估算算法。根据现有的实验数据,分析锂电池特性,构建二阶RC等效电路模型,并进行参数辨识,搭建MATLAB仿真平台联合EKF算法进行SOC估算,将仿真结果与真实数据进行对比,结果表明,EKF联合估算SOC比EKF估算SOC误差精度约高1.2%,且抗干扰能力更强。