A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracki...A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.展开更多
A state space aproach for modeling nonstationary time series is employed in analysing gyro transient process. Based on the concept of smoothness priors constraint, the overall model is using the Kalman filter and Akai...A state space aproach for modeling nonstationary time series is employed in analysing gyro transient process. Based on the concept of smoothness priors constraint, the overall model is using the Kalman filter and Akaike's AIC criterion.Some numerical results of gyro drift models are obtained for analysis of gyro system. As the trend and irregular components of the observed time series can be modeled simultaneously, it is statistically more accurate and efficient than that modeled separately.展开更多
Aim To find an effective method to remove the registration error in multi-sensor systems. Methods A Kalman filtering technique was proposed to estimate and remove sensor bias and sensor fare tilt errors in multisenso...Aim To find an effective method to remove the registration error in multi-sensor systems. Methods A Kalman filtering technique was proposed to estimate and remove sensor bias and sensor fare tilt errors in multisensor systems with a moving platform. Results Simulation results are presented to demonstrate the performance of the approach. Conclusion The Kalman filter algorithm am detect registration errors and use this information to converge tracks from independent sensors. This is particularly important if the data from the sensors are to fused.展开更多
Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the of...Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the often-used current statistical model. Results The simulation results show that the new IMM (interactive multiple model) have low tracking error in both maneuVering segment and non^Inaneuwi segment while the current statistical model bas muCh higher tracking error in non-maneuvering segment. Conclusion In the point of trackintaccuracy, the new IMM method is much better than the current acceleration method. It can develop into a practical target hacking method.展开更多
There should be high resolution demand that is better than 1000 DPI(dot per inch) for high precision image scanning system. This paper introduced the two-level computer controlled system that consisted of LS-3500 film...There should be high resolution demand that is better than 1000 DPI(dot per inch) for high precision image scanning system. This paper introduced the two-level computer controlled system that consisted of LS-3500 film scanner, AST386/33 monitoring control level and Intel 8031 single chip computer that is used as DDC level. The formula for scanning image data processing and methods of statistic parameters calculating are described.展开更多
A kalman filter in the spherical-rectangular coordinate system to track a maneuvering target is introduced. A dynamic model with extended state vector is proposed in this paper to improve the state estimation (i.e. p...A kalman filter in the spherical-rectangular coordinate system to track a maneuvering target is introduced. A dynamic model with extended state vector is proposed in this paper to improve the state estimation (i.e. position, velocity and acceleration) even the sensor data(i.e. range, azimuth angle and elevation angle ) is color contaminated. The Kalman filter equations are decoupled by proper coordinate transformation and using filter gain rotation algorithm. Monto Carlo simulation is performed for different kinds of target trajectories(with the same measurement noise) and the root mean square values of estimation errors are computed. Results show that there is significant improvement in tracking capability over the methods discussed by other researchers.展开更多
文摘A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.
文摘A state space aproach for modeling nonstationary time series is employed in analysing gyro transient process. Based on the concept of smoothness priors constraint, the overall model is using the Kalman filter and Akaike's AIC criterion.Some numerical results of gyro drift models are obtained for analysis of gyro system. As the trend and irregular components of the observed time series can be modeled simultaneously, it is statistically more accurate and efficient than that modeled separately.
文摘Aim To find an effective method to remove the registration error in multi-sensor systems. Methods A Kalman filtering technique was proposed to estimate and remove sensor bias and sensor fare tilt errors in multisensor systems with a moving platform. Results Simulation results are presented to demonstrate the performance of the approach. Conclusion The Kalman filter algorithm am detect registration errors and use this information to converge tracks from independent sensors. This is particularly important if the data from the sensors are to fused.
文摘Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the often-used current statistical model. Results The simulation results show that the new IMM (interactive multiple model) have low tracking error in both maneuVering segment and non^Inaneuwi segment while the current statistical model bas muCh higher tracking error in non-maneuvering segment. Conclusion In the point of trackintaccuracy, the new IMM method is much better than the current acceleration method. It can develop into a practical target hacking method.
文摘There should be high resolution demand that is better than 1000 DPI(dot per inch) for high precision image scanning system. This paper introduced the two-level computer controlled system that consisted of LS-3500 film scanner, AST386/33 monitoring control level and Intel 8031 single chip computer that is used as DDC level. The formula for scanning image data processing and methods of statistic parameters calculating are described.
文摘A kalman filter in the spherical-rectangular coordinate system to track a maneuvering target is introduced. A dynamic model with extended state vector is proposed in this paper to improve the state estimation (i.e. position, velocity and acceleration) even the sensor data(i.e. range, azimuth angle and elevation angle ) is color contaminated. The Kalman filter equations are decoupled by proper coordinate transformation and using filter gain rotation algorithm. Monto Carlo simulation is performed for different kinds of target trajectories(with the same measurement noise) and the root mean square values of estimation errors are computed. Results show that there is significant improvement in tracking capability over the methods discussed by other researchers.