为克服支持向量机(support vector machine,SVM)在线辨识过程需要较大的内存开销的问题,该文将递推最小二乘法(recursive least square,RLS)与最小二乘支持向量机(least squares support vector machine,LS-SVM)回归相结合,利用RLS在线...为克服支持向量机(support vector machine,SVM)在线辨识过程需要较大的内存开销的问题,该文将递推最小二乘法(recursive least square,RLS)与最小二乘支持向量机(least squares support vector machine,LS-SVM)回归相结合,利用RLS在线调整支持向量机的权向量和偏移量,实现了系统逆动力学模型的在线辨识。在获得逆动力学模型的基础上,设计了一种基于逆动力学递推最小二乘支持向量机的控制算法,利用RLS在线调整控制器参数。过热汽温辨识和控制的仿真结果表明,辨识出的逆动力学模型具有较高的精度,所设计的控制器能获得较好的控制性能和有较强的适应能力。展开更多
建立1种基于最小二乘支持向量机(least squares support vector machine,LSSVM)的模糊辨识方法,根据学习样本集的模糊聚类结果,产生LSSVM的模糊核函数,并证明该模糊核函数是Mercer核函数,为LSSVM提供1种构造核函数的简便方法。此外,由...建立1种基于最小二乘支持向量机(least squares support vector machine,LSSVM)的模糊辨识方法,根据学习样本集的模糊聚类结果,产生LSSVM的模糊核函数,并证明该模糊核函数是Mercer核函数,为LSSVM提供1种构造核函数的简便方法。此外,由于所建立的模糊辨识方法在T-S模糊模型的后件参数学习过程中采用结构风险最小化准则,提高了模型的泛化能力。利用所建立的辨识方法进行热工对象逆系统模型辨识,证明了该方法的有效性。展开更多
文摘为克服支持向量机(support vector machine,SVM)在线辨识过程需要较大的内存开销的问题,该文将递推最小二乘法(recursive least square,RLS)与最小二乘支持向量机(least squares support vector machine,LS-SVM)回归相结合,利用RLS在线调整支持向量机的权向量和偏移量,实现了系统逆动力学模型的在线辨识。在获得逆动力学模型的基础上,设计了一种基于逆动力学递推最小二乘支持向量机的控制算法,利用RLS在线调整控制器参数。过热汽温辨识和控制的仿真结果表明,辨识出的逆动力学模型具有较高的精度,所设计的控制器能获得较好的控制性能和有较强的适应能力。
文摘建立1种基于最小二乘支持向量机(least squares support vector machine,LSSVM)的模糊辨识方法,根据学习样本集的模糊聚类结果,产生LSSVM的模糊核函数,并证明该模糊核函数是Mercer核函数,为LSSVM提供1种构造核函数的简便方法。此外,由于所建立的模糊辨识方法在T-S模糊模型的后件参数学习过程中采用结构风险最小化准则,提高了模型的泛化能力。利用所建立的辨识方法进行热工对象逆系统模型辨识,证明了该方法的有效性。