对具有NP完全难度的网络状态动态变化下的路由问题,提出了一种基于蚁群网络(A n tnet)的蚁群优化分布式Q oS路由算法.算法的主要特点是:(1)采用了动态更新的概率表替代传统的路由表;(2)采用了智能的初始化方法;(3)采用了一种新颖的信息...对具有NP完全难度的网络状态动态变化下的路由问题,提出了一种基于蚁群网络(A n tnet)的蚁群优化分布式Q oS路由算法.算法的主要特点是:(1)采用了动态更新的概率表替代传统的路由表;(2)采用了智能的初始化方法;(3)采用了一种新颖的信息素更新机制;(4)采用一种新的节点选择机制;(5)引入蚂蚁相遇机制.与标准的A n tN et相比,该算法具有更快的收敛速度和较好的吞吐能力.另外,算法同时考虑了满足Q oS度量和负载平衡等问题.展开更多
理论上已证明组播QoS(Quality of Service)路由问题是一NP完全问题。集群智能算法为此类问题的求解提出了新的思路。在进行基于粒子群优化(PSO)的QoS组播路由算法研究的基础上,分析了基本粒子群易陷入局部最优路由而导致停滞的现象,通...理论上已证明组播QoS(Quality of Service)路由问题是一NP完全问题。集群智能算法为此类问题的求解提出了新的思路。在进行基于粒子群优化(PSO)的QoS组播路由算法研究的基础上,分析了基本粒子群易陷入局部最优路由而导致停滞的现象,通过引入变异算子,阶段变异的机制,克服了标准PSO算法的缺点。仿真结果显示了算法的可行性和有效性。展开更多
文摘对具有NP完全难度的网络状态动态变化下的路由问题,提出了一种基于蚁群网络(A n tnet)的蚁群优化分布式Q oS路由算法.算法的主要特点是:(1)采用了动态更新的概率表替代传统的路由表;(2)采用了智能的初始化方法;(3)采用了一种新颖的信息素更新机制;(4)采用一种新的节点选择机制;(5)引入蚂蚁相遇机制.与标准的A n tN et相比,该算法具有更快的收敛速度和较好的吞吐能力.另外,算法同时考虑了满足Q oS度量和负载平衡等问题.
文摘理论上已证明组播QoS(Quality of Service)路由问题是一NP完全问题。集群智能算法为此类问题的求解提出了新的思路。在进行基于粒子群优化(PSO)的QoS组播路由算法研究的基础上,分析了基本粒子群易陷入局部最优路由而导致停滞的现象,通过引入变异算子,阶段变异的机制,克服了标准PSO算法的缺点。仿真结果显示了算法的可行性和有效性。