期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于神经网络的实时事故预测方法研究进展
1
作者
炎天策
《汽车实用技术》
2024年第5期176-181,共6页
道路交通事故预测作为道路主动安全管理的重要组成部分,在降低事故发生概率、帮助管理者制定安全决策等方面起着重要作用。随着数据需求的不断增加,传统方法已无法满足大数据的需求,机器学习和人工智能算法在动态、实时和复杂情况下的...
道路交通事故预测作为道路主动安全管理的重要组成部分,在降低事故发生概率、帮助管理者制定安全决策等方面起着重要作用。随着数据需求的不断增加,传统方法已无法满足大数据的需求,机器学习和人工智能算法在动态、实时和复杂情况下的道路交通事故预测领域显示出强大的潜力。文章从数据获取和特征变量选择开始介绍,详细叙述了基于机器学习的神经网络及与深度学习结合后该方法在国内外的相关研究,分析了使用神经网络相关方法在建模时会面临的优缺点,最后对基于神经网络的交通实时事故预测方法进行了总结及展望,给出未来的发展趋势。
展开更多
关键词
交通工程
实时事故预测
神经网络
深度学习
下载PDF
职称材料
题名
基于神经网络的实时事故预测方法研究进展
1
作者
炎天策
机构
长安大学汽车学院
出处
《汽车实用技术》
2024年第5期176-181,共6页
文摘
道路交通事故预测作为道路主动安全管理的重要组成部分,在降低事故发生概率、帮助管理者制定安全决策等方面起着重要作用。随着数据需求的不断增加,传统方法已无法满足大数据的需求,机器学习和人工智能算法在动态、实时和复杂情况下的道路交通事故预测领域显示出强大的潜力。文章从数据获取和特征变量选择开始介绍,详细叙述了基于机器学习的神经网络及与深度学习结合后该方法在国内外的相关研究,分析了使用神经网络相关方法在建模时会面临的优缺点,最后对基于神经网络的交通实时事故预测方法进行了总结及展望,给出未来的发展趋势。
关键词
交通工程
实时事故预测
神经网络
深度学习
Keywords
Traffic engineering
Real-time accident prediction
Neural network
Deep learning
分类号
U491.3 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于神经网络的实时事故预测方法研究进展
炎天策
《汽车实用技术》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部