传统的植株器官分割方法依赖经验选择阈值参数,而当前的深度学习浅层框架可能会导致植株重要的几何特征丢失,并难以有效整合植株的局部和全局特征。因此,提出了一个基于三维点云的植株器官分割网络(local global feature fusion segment...传统的植株器官分割方法依赖经验选择阈值参数,而当前的深度学习浅层框架可能会导致植株重要的几何特征丢失,并难以有效整合植株的局部和全局特征。因此,提出了一个基于三维点云的植株器官分割网络(local global feature fusion segmentation network,LGF-SegNet)模型,通过引入双权重注意力机制模块和位置编码,更适合在植株点云数据中表达几何特征。在提出的框架的解码层引入特征聚合模块,融合植株点云的局部和全局特征,使得该框架能够关注植株的整体特征轮廓同时保留细节植物纹理(如茎和叶)。实验结果表明,提出的架构在语义分割的交并比、精确率和F1分数的平均值分别达到85.76%、93.18%、91.08%,在实例分割的平均精确率、平均实例覆盖率以及平均实例加权覆盖率达到85.27%、78.46%、79.63%,优于当前流行的植株点云分割任务中使用的深度学习网络架构,并适用于植株语义分割和实例分割的双重任务。这为后续的植株生长预测等研究奠定基础。展开更多