首先讨论了不同尺度关系下宏细观过渡方法,然后重点介绍了尺度关系满足L l A≈l_m时(适用于金属基复合材料,泡沫基复合材料和纳米复合材料等),构元材料看作微极介质,而均质化后的材料仍可看作传统Cauchy介质时的解析弹塑性细观力学方法...首先讨论了不同尺度关系下宏细观过渡方法,然后重点介绍了尺度关系满足L l A≈l_m时(适用于金属基复合材料,泡沫基复合材料和纳米复合材料等),构元材料看作微极介质,而均质化后的材料仍可看作传统Cauchy介质时的解析弹塑性细观力学方法。在这样的理论框架下,细观结构的尺度影响可作为变量引入细观力学模型,并且当A l_m时 该方法自然退化成传统的细观力学方法。展开更多
A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an i...A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an infinite matrix.The interations of the reinforced phases are taken into account by using the average matrix stress concept.When the external layer vanishes,the proposed model reduces to the classical Mori-Tanaka's model for spherical inclusions.Theoretical results for the composite of polyester matrix filled by hollow glass spheres and voids show excellent agreement with experimental results.展开更多
文摘首先讨论了不同尺度关系下宏细观过渡方法,然后重点介绍了尺度关系满足L l A≈l_m时(适用于金属基复合材料,泡沫基复合材料和纳米复合材料等),构元材料看作微极介质,而均质化后的材料仍可看作传统Cauchy介质时的解析弹塑性细观力学方法。在这样的理论框架下,细观结构的尺度影响可作为变量引入细观力学模型,并且当A l_m时 该方法自然退化成传统的细观力学方法。
文摘A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an infinite matrix.The interations of the reinforced phases are taken into account by using the average matrix stress concept.When the external layer vanishes,the proposed model reduces to the classical Mori-Tanaka's model for spherical inclusions.Theoretical results for the composite of polyester matrix filled by hollow glass spheres and voids show excellent agreement with experimental results.