[目的/意义]隐私数据要素的流转是保证粮食供应链安全高效运行的重要基础。实现粮食供应链中隐私数据要素的协同计算对保障粮食质量安全具有重大意义。[方法]针对供应链中不同主体间因数据的隐私性而无法共享并参与计算的难题,提出基于...[目的/意义]隐私数据要素的流转是保证粮食供应链安全高效运行的重要基础。实现粮食供应链中隐私数据要素的协同计算对保障粮食质量安全具有重大意义。[方法]针对供应链中不同主体间因数据的隐私性而无法共享并参与计算的难题,提出基于工业互联网标识解析技术与联邦学习的粮食供应链数据流转与协同计算架构,设计了支撑联邦学习数据互通的数据标识编码和任务标识编码及对应的参数、信息和评价数据模型;搭建了不同主体数据特征同构的单环节横向联邦学习模型和数据特征异构的跨环节纵向联邦学习模型,基于逻辑回归算法对模型参数进行快速调整计算,以粮食供应链安全风险评估场景为对象,依托开源FATE (Federated AI Technology Enabler)联邦学习平台进行测试验证。[结果和讨论]相比传统的单一主体评估计算,横向联邦学习评估准确率提升6.7%,纵向联邦学习评估准确率提升8.3%。[结论]采用联邦学习的方式提高了评估的准确性。本研究可为粮食供应链安全高效稳定运行提供技术支撑。展开更多
基于手机成像质量颜色评价的必要性,提出一种融合相机主观场景成像色彩和白平衡的自动评测方法(CIQA),以充分提取彩色图像相关特征并模拟人眼视觉感知特性来评价图像颜色。首先使用尺度不变特征变换(Scale-invariant feature transform,...基于手机成像质量颜色评价的必要性,提出一种融合相机主观场景成像色彩和白平衡的自动评测方法(CIQA),以充分提取彩色图像相关特征并模拟人眼视觉感知特性来评价图像颜色。首先使用尺度不变特征变换(Scale-invariant feature transform,SIFT)与透射变换相结合的方法,标识主观图像中ColorChecker标准二十四色卡对应的位置;而后构建离差率最小二乘法模型,并采用专家赋权法和熵权法计算色彩还原和白平衡指标权重分配比例;最后,通过多指标权重值对TOPSIS(Technique for Order Preference by Similarity to an Ideal Solution)进行改进,确定各方案与典型正负理想方案的接近程度,实现对智能手机成像质量颜色的优劣排序。对真实场景采集的图片进行实验,并与现有的两种决策方法进行对比验证。结果表明,所提方法能提高评价效率、节省人力,并可以获得与人眼主观判断一致性较好的评价结果。展开更多
文摘[目的/意义]隐私数据要素的流转是保证粮食供应链安全高效运行的重要基础。实现粮食供应链中隐私数据要素的协同计算对保障粮食质量安全具有重大意义。[方法]针对供应链中不同主体间因数据的隐私性而无法共享并参与计算的难题,提出基于工业互联网标识解析技术与联邦学习的粮食供应链数据流转与协同计算架构,设计了支撑联邦学习数据互通的数据标识编码和任务标识编码及对应的参数、信息和评价数据模型;搭建了不同主体数据特征同构的单环节横向联邦学习模型和数据特征异构的跨环节纵向联邦学习模型,基于逻辑回归算法对模型参数进行快速调整计算,以粮食供应链安全风险评估场景为对象,依托开源FATE (Federated AI Technology Enabler)联邦学习平台进行测试验证。[结果和讨论]相比传统的单一主体评估计算,横向联邦学习评估准确率提升6.7%,纵向联邦学习评估准确率提升8.3%。[结论]采用联邦学习的方式提高了评估的准确性。本研究可为粮食供应链安全高效稳定运行提供技术支撑。
文摘基于手机成像质量颜色评价的必要性,提出一种融合相机主观场景成像色彩和白平衡的自动评测方法(CIQA),以充分提取彩色图像相关特征并模拟人眼视觉感知特性来评价图像颜色。首先使用尺度不变特征变换(Scale-invariant feature transform,SIFT)与透射变换相结合的方法,标识主观图像中ColorChecker标准二十四色卡对应的位置;而后构建离差率最小二乘法模型,并采用专家赋权法和熵权法计算色彩还原和白平衡指标权重分配比例;最后,通过多指标权重值对TOPSIS(Technique for Order Preference by Similarity to an Ideal Solution)进行改进,确定各方案与典型正负理想方案的接近程度,实现对智能手机成像质量颜色的优劣排序。对真实场景采集的图片进行实验,并与现有的两种决策方法进行对比验证。结果表明,所提方法能提高评价效率、节省人力,并可以获得与人眼主观判断一致性较好的评价结果。