为了提高机动车驾驶时的安全性,提出了基于计算机视觉的行车安全中车距估计与超车检测方法。首先,使用车辆阴影检测方法确定车辆位置,根据阴影位置和视觉中心点的距离建立车距估计函数;其次,对超车情况使用背景光流建模的方法建立光流...为了提高机动车驾驶时的安全性,提出了基于计算机视觉的行车安全中车距估计与超车检测方法。首先,使用车辆阴影检测方法确定车辆位置,根据阴影位置和视觉中心点的距离建立车距估计函数;其次,对超车情况使用背景光流建模的方法建立光流估计方程,通过估计光流将行驶中的正常物体与非正常物体分开,从而辨识驾驶途中的超车现象。根据车距和超车情况的检测及时提醒驾驶员注意行车中可能存在的安全隐患。实验结果表明该方法可以较为准确地估计车距、检测超车情况。在统一设备架构(CUDA)下使用图形处理器(GPU)NVIDIA Ge Force GTX680显卡对算法进行加速,可以达到48.9ms/帧的处理速率,基本满足了实时处理的要求。展开更多
文摘为了提高机动车驾驶时的安全性,提出了基于计算机视觉的行车安全中车距估计与超车检测方法。首先,使用车辆阴影检测方法确定车辆位置,根据阴影位置和视觉中心点的距离建立车距估计函数;其次,对超车情况使用背景光流建模的方法建立光流估计方程,通过估计光流将行驶中的正常物体与非正常物体分开,从而辨识驾驶途中的超车现象。根据车距和超车情况的检测及时提醒驾驶员注意行车中可能存在的安全隐患。实验结果表明该方法可以较为准确地估计车距、检测超车情况。在统一设备架构(CUDA)下使用图形处理器(GPU)NVIDIA Ge Force GTX680显卡对算法进行加速,可以达到48.9ms/帧的处理速率,基本满足了实时处理的要求。