Piece-wise smooth systems are an important class of ordinary differential equations whosedynamics are known to exhibit complex bifurcation scenarios and chaos. Broadly speaking,piece-wise smooth systems can undergo al...Piece-wise smooth systems are an important class of ordinary differential equations whosedynamics are known to exhibit complex bifurcation scenarios and chaos. Broadly speaking,piece-wise smooth systems can undergo all the bifurcation that smooth ones can. Moreinterestingly, there is a whole class of bifurcation that are unique to piece-wise smoothsystems, such as the bifurcation caused by the geometric shape of the region in which the展开更多
In this paper, we use a kind of main part symmetry scheme to study the center manifolds and Hop f bifurcations for ODEs, and set up a kind of method for calculation them.
Parameterized dynamical systems with a simple zero eigenvalue and a couple of purely imaginary eigenvalues are considered. It is proved that this type of eigen-structure leads to torus bifurcation under certain nondeg...Parameterized dynamical systems with a simple zero eigenvalue and a couple of purely imaginary eigenvalues are considered. It is proved that this type of eigen-structure leads to torus bifurcation under certain nondegenerate conditions. We show that the discrete systems, obtained by discretizing the ODEs using symmetric, eigen-structure preserving schemes, inherit the similar torus bifurcation properties. Predholm theory in Banach spaces is applied to obtain the global torus bifurcation. Our results complement those on the study of discretization effects of global bifurcation.展开更多
In this paper we investigate the homoclinic bifurcation properties near an eight-figure homoclinic orbit of co-dimension two of a planar dynamical system. The corresponding local bifurcation diagram is also illustrate...In this paper we investigate the homoclinic bifurcation properties near an eight-figure homoclinic orbit of co-dimension two of a planar dynamical system. The corresponding local bifurcation diagram is also illustrated by numerical computation.展开更多
基金The NSFC (10071030) of China.The Volkswagen Foundation of Germany The Project-sponsored by SRP for ROCS,SEM(2002).
文摘Piece-wise smooth systems are an important class of ordinary differential equations whosedynamics are known to exhibit complex bifurcation scenarios and chaos. Broadly speaking,piece-wise smooth systems can undergo all the bifurcation that smooth ones can. Moreinterestingly, there is a whole class of bifurcation that are unique to piece-wise smoothsystems, such as the bifurcation caused by the geometric shape of the region in which the
文摘In this paper, we use a kind of main part symmetry scheme to study the center manifolds and Hop f bifurcations for ODEs, and set up a kind of method for calculation them.
基金The NSFC (10071030) of ChinaThe Volkswagen Foundation of Germany The Project-sponsored by SRP for ROCS, SEM (2002).
文摘Parameterized dynamical systems with a simple zero eigenvalue and a couple of purely imaginary eigenvalues are considered. It is proved that this type of eigen-structure leads to torus bifurcation under certain nondegenerate conditions. We show that the discrete systems, obtained by discretizing the ODEs using symmetric, eigen-structure preserving schemes, inherit the similar torus bifurcation properties. Predholm theory in Banach spaces is applied to obtain the global torus bifurcation. Our results complement those on the study of discretization effects of global bifurcation.
基金The NSFC (10071030) of ChinaThe Volkswagen Foundation of Germany The Project-sponsored by SRP for ROCS, SEM (2002).
文摘In this paper we investigate the homoclinic bifurcation properties near an eight-figure homoclinic orbit of co-dimension two of a planar dynamical system. The corresponding local bifurcation diagram is also illustrated by numerical computation.