以NiCl_2·6H_2O、尿素、葡萄糖为原料采用水热法制备了NiO前体,将前体在空气中烧结最终得到NiO电极活性材料。该NiO样品具有镂空结构的类空心球形貌,且由50~100 nm初级纳米颗粒构成。对该NiO样品作为锂离子电池负极材料的储锂性能...以NiCl_2·6H_2O、尿素、葡萄糖为原料采用水热法制备了NiO前体,将前体在空气中烧结最终得到NiO电极活性材料。该NiO样品具有镂空结构的类空心球形貌,且由50~100 nm初级纳米颗粒构成。对该NiO样品作为锂离子电池负极材料的储锂性能进行了研究,结果发现赝电容效应对该材料储锂容量和倍率性能有重要贡献。因独特的空心纳米结构和赝电容效应,该材料表现出出色的电化学循环稳定性和优异的大倍率充放电性能。在500m A·g^(-1)电流密度下,100圈充放电循环后放电比容量为650 m A·h·g^(-1),容量保持率达86.6%;在10 A·g^(-1)的超高倍率下,其稳定放电比容量仍高达432 m A·h·g^(-1)。展开更多
文摘以NiCl_2·6H_2O、尿素、葡萄糖为原料采用水热法制备了NiO前体,将前体在空气中烧结最终得到NiO电极活性材料。该NiO样品具有镂空结构的类空心球形貌,且由50~100 nm初级纳米颗粒构成。对该NiO样品作为锂离子电池负极材料的储锂性能进行了研究,结果发现赝电容效应对该材料储锂容量和倍率性能有重要贡献。因独特的空心纳米结构和赝电容效应,该材料表现出出色的电化学循环稳定性和优异的大倍率充放电性能。在500m A·g^(-1)电流密度下,100圈充放电循环后放电比容量为650 m A·h·g^(-1),容量保持率达86.6%;在10 A·g^(-1)的超高倍率下,其稳定放电比容量仍高达432 m A·h·g^(-1)。