Aim To investigate in vitro apoptosis-induction effects of oridonin on gastric tumor cells BGC-823 and its effects on cell cycle, mitochondrial membrane potential and intracellular Ca^2+ to shed light on the mode of ...Aim To investigate in vitro apoptosis-induction effects of oridonin on gastric tumor cells BGC-823 and its effects on cell cycle, mitochondrial membrane potential and intracellular Ca^2+ to shed light on the mode of its anticancer action. Methods The MTT method was used to investigate the inhibitory effect of oridonin on BGC-823 cells. The apoptosis-induction effect was evaluated by confocal laser microscopy and flow cytometry. The change of mitochondrial membrane potential and the increase of intracellular Ca^2+ were assessed by fluorescence probe rhodamine123 and Fluo 3-AM, respectively, with flow cytometry. The expression of apoptosis and cell cycle related proteins was studied using western blotting. Results Oridonin inhibited BGC-823 cells growth with IC50 of 22.21 p, mol.L^-1. It induced apoptosis in a dose-dependent manner. In addition, it decreased mitochondria membrane potential, increased intracellular Ca^2+, and activated pro-caspase 3. BGC-823 cells were arrested in G2/M cell cycle phase with lower expression of cyclin A protein. The up-regulation of p53 was observed before apoptosis and cell cycle arrest occurred. Conclusion Oridonin inhibits the proliferation of BGC-823 cells through G2/M cell cycle arrest and apoptosis induction, which is mediated by influx of Ca^2+, up-regulation of p53, activation of caspase-3, and down-regulation of cyclin A.展开更多
基金We thank the National Outstanding Youth Foundation by NSF of ChinaTrans-Century Training Program Foundation for the Talents by the Ministry of Education for financial support.
基金Program for Changjiang Scholar and Innova-tive Team in University(Grant No.985-2-063-112).
文摘Aim To investigate in vitro apoptosis-induction effects of oridonin on gastric tumor cells BGC-823 and its effects on cell cycle, mitochondrial membrane potential and intracellular Ca^2+ to shed light on the mode of its anticancer action. Methods The MTT method was used to investigate the inhibitory effect of oridonin on BGC-823 cells. The apoptosis-induction effect was evaluated by confocal laser microscopy and flow cytometry. The change of mitochondrial membrane potential and the increase of intracellular Ca^2+ were assessed by fluorescence probe rhodamine123 and Fluo 3-AM, respectively, with flow cytometry. The expression of apoptosis and cell cycle related proteins was studied using western blotting. Results Oridonin inhibited BGC-823 cells growth with IC50 of 22.21 p, mol.L^-1. It induced apoptosis in a dose-dependent manner. In addition, it decreased mitochondria membrane potential, increased intracellular Ca^2+, and activated pro-caspase 3. BGC-823 cells were arrested in G2/M cell cycle phase with lower expression of cyclin A protein. The up-regulation of p53 was observed before apoptosis and cell cycle arrest occurred. Conclusion Oridonin inhibits the proliferation of BGC-823 cells through G2/M cell cycle arrest and apoptosis induction, which is mediated by influx of Ca^2+, up-regulation of p53, activation of caspase-3, and down-regulation of cyclin A.