Graphene has attracted great interest in optoelectronics, owing to its high carrier mobility and broadband absorption. However, a graphene photodetector exhibits low photoresponsivity because of its weak light absorpt...Graphene has attracted great interest in optoelectronics, owing to its high carrier mobility and broadband absorption. However, a graphene photodetector exhibits low photoresponsivity because of its weak light absorption. In this work, we designed a graphene/MoSe_2 heterostructure photodetector, which exhibits photoresponse ranging from visible to near infrared and an ultrahigh photoresponsivity up to 1.3 × 104 A·W^(-1) at 550 nm. The electron–hole pairs are excited in a few-layered MoSe2 and separated by the built-in electric field. A large number of electrons shift to graphene, while the holes remain in the MoSe_2, which creates a photogating effect.展开更多
Strain engineering is proposed to be an effective technology to tune the properties of two-dimensional(2D)transition metal dichalcogenides(TMDCs).Conventional strain engineering techniques(e.g.,mechanical bending,heat...Strain engineering is proposed to be an effective technology to tune the properties of two-dimensional(2D)transition metal dichalcogenides(TMDCs).Conventional strain engineering techniques(e.g.,mechanical bending,heating)cannot conserve strain due to their dependence on external action,which thereby limits the application in electronics.In addition,the theoretically predicted strain-induced tuning of electrical performance of TMDCs has not been experimentally proved yet.Here,a facile but effective approach is proposed to retain and tune the biaxial tensile strain in monolayer MoS_(2) by adjusting the process of the chemical vapor deposition(CVD).To prove the feasibility of this method,the strain formation model of CVD grown MoS_(2) is proposed which is supported by the calculated strain dependence of band gap via the density functional theory(DFT).Next,the electrical properties tuning of strained monolayer MoS_(2) is demonstrated in experiment,where the carrier mobility of MoS_(2) was increased by two orders(~0.15 to~23 cm^(2)·V^(−1)·s^(−1)).The proposed pathway of strain preservation and regulation will open up the optics application of strain engineering and the fabrication of high performance electronic devices in 2D materials.展开更多
基金financially supported by the National Natural Science Foundation of China(No.61575010)the Natural Science Foundation of Beijing(No.4162016)+1 种基金the Beijing Municipal Science and Technology Commission(No.Z151100003315018)the Beijing Nova Program(No.Z141109001814053)
文摘Graphene has attracted great interest in optoelectronics, owing to its high carrier mobility and broadband absorption. However, a graphene photodetector exhibits low photoresponsivity because of its weak light absorption. In this work, we designed a graphene/MoSe_2 heterostructure photodetector, which exhibits photoresponse ranging from visible to near infrared and an ultrahigh photoresponsivity up to 1.3 × 104 A·W^(-1) at 550 nm. The electron–hole pairs are excited in a few-layered MoSe2 and separated by the built-in electric field. A large number of electrons shift to graphene, while the holes remain in the MoSe_2, which creates a photogating effect.
基金This work was financially supported by the National Science Foundation of China(Nos.61922005,U1930105,21673054 and 11874130)Beijing Natural Science Foundation(No.JQ20027)+1 种基金the Beijing Excellent Talent Program,the Equipment Preresearch Project of China Electronics Technology Group Corporation(CETC)(No.6141B08110104)the General Program of Science and Technology Development Project of Beijing Municipal Education Commission(No.KM202010005005).
文摘Strain engineering is proposed to be an effective technology to tune the properties of two-dimensional(2D)transition metal dichalcogenides(TMDCs).Conventional strain engineering techniques(e.g.,mechanical bending,heating)cannot conserve strain due to their dependence on external action,which thereby limits the application in electronics.In addition,the theoretically predicted strain-induced tuning of electrical performance of TMDCs has not been experimentally proved yet.Here,a facile but effective approach is proposed to retain and tune the biaxial tensile strain in monolayer MoS_(2) by adjusting the process of the chemical vapor deposition(CVD).To prove the feasibility of this method,the strain formation model of CVD grown MoS_(2) is proposed which is supported by the calculated strain dependence of band gap via the density functional theory(DFT).Next,the electrical properties tuning of strained monolayer MoS_(2) is demonstrated in experiment,where the carrier mobility of MoS_(2) was increased by two orders(~0.15 to~23 cm^(2)·V^(−1)·s^(−1)).The proposed pathway of strain preservation and regulation will open up the optics application of strain engineering and the fabrication of high performance electronic devices in 2D materials.