期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High responsivity and near-infrared photodetector based on graphene/MoSe_2 heterostructure 被引量:5
1
作者 beiyun liu Congya You +5 位作者 Chen Zhao Gaoliang Shen Yawei liu Yufo Li Hui Yan Yongzhe Zhang 《Chinese Optics Letters》 SCIE EI CAS CSCD 2019年第2期7-11,共5页
Graphene has attracted great interest in optoelectronics, owing to its high carrier mobility and broadband absorption. However, a graphene photodetector exhibits low photoresponsivity because of its weak light absorpt... Graphene has attracted great interest in optoelectronics, owing to its high carrier mobility and broadband absorption. However, a graphene photodetector exhibits low photoresponsivity because of its weak light absorption. In this work, we designed a graphene/MoSe_2 heterostructure photodetector, which exhibits photoresponse ranging from visible to near infrared and an ultrahigh photoresponsivity up to 1.3 × 104 A·W^(-1) at 550 nm. The electron–hole pairs are excited in a few-layered MoSe2 and separated by the built-in electric field. A large number of electrons shift to graphene, while the holes remain in the MoSe_2, which creates a photogating effect. 展开更多
关键词 HIGH RESPONSIVITY NEAR-INFRARED MoSe2 HETEROSTRUCTURE
原文传递
Carrier mobility tuning of MoS_(2) by strain engineering in CVD growth process
2
作者 Yongfeng Chen Wenjie Deng +10 位作者 Xiaoqing Chen Yi Wu Jianwei Shi Jingying Zheng Feihong Chu beiyun liu Boxing An Congya You Liying Jiao Xinfeng liu Yongzhe Zhang 《Nano Research》 SCIE EI CSCD 2021年第7期2314-2320,共7页
Strain engineering is proposed to be an effective technology to tune the properties of two-dimensional(2D)transition metal dichalcogenides(TMDCs).Conventional strain engineering techniques(e.g.,mechanical bending,heat... Strain engineering is proposed to be an effective technology to tune the properties of two-dimensional(2D)transition metal dichalcogenides(TMDCs).Conventional strain engineering techniques(e.g.,mechanical bending,heating)cannot conserve strain due to their dependence on external action,which thereby limits the application in electronics.In addition,the theoretically predicted strain-induced tuning of electrical performance of TMDCs has not been experimentally proved yet.Here,a facile but effective approach is proposed to retain and tune the biaxial tensile strain in monolayer MoS_(2) by adjusting the process of the chemical vapor deposition(CVD).To prove the feasibility of this method,the strain formation model of CVD grown MoS_(2) is proposed which is supported by the calculated strain dependence of band gap via the density functional theory(DFT).Next,the electrical properties tuning of strained monolayer MoS_(2) is demonstrated in experiment,where the carrier mobility of MoS_(2) was increased by two orders(~0.15 to~23 cm^(2)·V^(−1)·s^(−1)).The proposed pathway of strain preservation and regulation will open up the optics application of strain engineering and the fabrication of high performance electronic devices in 2D materials. 展开更多
关键词 MoS_(2) CVD carrier mobility strain engineering 2D materials
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部