In this paper an attempt has been made to study the unsteady incompressible flow of a generalized Oldroyd-B fluid between two oscillating parallel plates in presence of a transverse magnetic field. An exact solution f...In this paper an attempt has been made to study the unsteady incompressible flow of a generalized Oldroyd-B fluid between two oscillating parallel plates in presence of a transverse magnetic field. An exact solution for the velocity field has been obtained by means of Laplace and finite Fourier sine transformations in series form in terms of Mittage-Leffler function. The dependence of the velocity field on fractional as well as material parameters has been illustrated graphically. The velocity fields for the classical Newtonian, generalized Maxwell, generalized second grade and ordinary Oldroyd-B fluids are recovered as limiting cases of the flow considered for the generalized Oldroyd-B fluid.展开更多
The unsteady incompressible viscous flow of a Generalised Maxwell fluid between two coaxial rotating infinite parallel circular disks is studied by using the method of integral transforms. The motion of the fluid is c...The unsteady incompressible viscous flow of a Generalised Maxwell fluid between two coaxial rotating infinite parallel circular disks is studied by using the method of integral transforms. The motion of the fluid is created by the rotation of the upper and lower circular disks with different angular velocities. A fractional calculus approach is utilized to determine the velocity profile in series form in terms of Mittag-Leffler function. The influence of the fractional as well as the material parameters on the velocity field is illustrated graphically.展开更多
In present paper, an investigation has been made on the fluctuating flow of a non-Newtonian second grade fluid through a porous medium over a semi-infinite porous plate in presence of a transverse magnetic field B0. T...In present paper, an investigation has been made on the fluctuating flow of a non-Newtonian second grade fluid through a porous medium over a semi-infinite porous plate in presence of a transverse magnetic field B0. The governing equations have been solved analytically and the expressions for the velocity and stress fields are obtained. The free stream velocity U(t) fluctuates in time about a non-zero constant mean. The effects of the permeability parameter K and magnetic field parameter M on velocity field have been analyzed quantitatively with the help of figures. It is noticed that the velocity field asymptotically approaches free stream velocity as it goes far away from the plate.展开更多
文摘In this paper an attempt has been made to study the unsteady incompressible flow of a generalized Oldroyd-B fluid between two oscillating parallel plates in presence of a transverse magnetic field. An exact solution for the velocity field has been obtained by means of Laplace and finite Fourier sine transformations in series form in terms of Mittage-Leffler function. The dependence of the velocity field on fractional as well as material parameters has been illustrated graphically. The velocity fields for the classical Newtonian, generalized Maxwell, generalized second grade and ordinary Oldroyd-B fluids are recovered as limiting cases of the flow considered for the generalized Oldroyd-B fluid.
文摘The unsteady incompressible viscous flow of a Generalised Maxwell fluid between two coaxial rotating infinite parallel circular disks is studied by using the method of integral transforms. The motion of the fluid is created by the rotation of the upper and lower circular disks with different angular velocities. A fractional calculus approach is utilized to determine the velocity profile in series form in terms of Mittag-Leffler function. The influence of the fractional as well as the material parameters on the velocity field is illustrated graphically.
文摘In present paper, an investigation has been made on the fluctuating flow of a non-Newtonian second grade fluid through a porous medium over a semi-infinite porous plate in presence of a transverse magnetic field B0. The governing equations have been solved analytically and the expressions for the velocity and stress fields are obtained. The free stream velocity U(t) fluctuates in time about a non-zero constant mean. The effects of the permeability parameter K and magnetic field parameter M on velocity field have been analyzed quantitatively with the help of figures. It is noticed that the velocity field asymptotically approaches free stream velocity as it goes far away from the plate.