This article describes the design and simulation of a pair of antennas on a small PCB with minimal coupling for a massive multiple input sensor network. The two antennas are planar inverted-F antennas (PIFA) that ar...This article describes the design and simulation of a pair of antennas on a small PCB with minimal coupling for a massive multiple input sensor network. The two antennas are planar inverted-F antennas (PIFA) that are fed with microstrip feed lines. The critical design factors are minimizing mass while creating ISM band and GPS L1 band antennas and developing data transmission schemes for maximum usage of all communication channels. The designed board is a 60 mm diameter, 0.6 mm thick circular FR4 board that weighs approximately 5 g.展开更多
A delay-locked loop based hybrid phase conjugator (DLL-HPC) is presented as a possible solution for 5G beamforming. Theoretical background, unique capabilities, and experimental verification are presented. The propose...A delay-locked loop based hybrid phase conjugator (DLL-HPC) is presented as a possible solution for 5G beamforming. Theoretical background, unique capabilities, and experimental verification are presented. The proposed DLL-HPC provides backwards compatibility with existing beamforming protocols as well as sub-millisecond beamsteering and automatic mobile target tracking with zero communication overhead. A proof-of-concept DLL-HPC prototype has been constructed from commercially available components to operate in the 5G NR-FR1 band, indicating that the technique can be readily adopted with available technology.展开更多
A low-cost airborne sensor mote has been designed for deployment en masse to characterize atmospheric conditions. The designed environmental sensing mote, or eMote, was inspired by the natural shape of auto-rotating m...A low-cost airborne sensor mote has been designed for deployment en masse to characterize atmospheric conditions. The designed environmental sensing mote, or eMote, was inspired by the natural shape of auto-rotating maple seeds to fall slowly and gather data along its descent. The eMotes measure and transmit temperature, air pressure, relative humidity, and wind speed estimates alongside GPS coordinates and timestamps. Up to 2080 eMotes can be deployed simultaneously with a 1 Hz sampling rate, but the system capacity increases by 2600 eMotes for every second added between samples. All measured and reported data falls within accuracy requirements for reporting with both the World Meteorological Organization (WMO) and the National Oceanic and Atmospheric Administration (NOAA). This paper presents the design and validation of the eMote system alongside discussions on the implementation of a large-scale, low-cost sensor network. The eMote represents unprecedented in-situ atmospheric measurement capabilities with the ability to deploy more than 260 times the number of sensing units as the most comparable commercially available dropsonde.展开更多
The need for higher spatial/temporal resolution in-situ atmospheric sensing has been established by both weather and climate researchers. In order to address this need, an airborne wireless sensor network called Globa...The need for higher spatial/temporal resolution in-situ atmospheric sensing has been established by both weather and climate researchers. In order to address this need, an airborne wireless sensor network called GlobalSense is currently being developed. GlobalSense is based on low-cost airborne probes that collect environmental data as they fall slowly through the atmosphere and on portable base stations that receive the data being collected. This paper presents an overview of this GlobalSense system as well as preliminary results from ground-based system testing.展开更多
文摘This article describes the design and simulation of a pair of antennas on a small PCB with minimal coupling for a massive multiple input sensor network. The two antennas are planar inverted-F antennas (PIFA) that are fed with microstrip feed lines. The critical design factors are minimizing mass while creating ISM band and GPS L1 band antennas and developing data transmission schemes for maximum usage of all communication channels. The designed board is a 60 mm diameter, 0.6 mm thick circular FR4 board that weighs approximately 5 g.
文摘A delay-locked loop based hybrid phase conjugator (DLL-HPC) is presented as a possible solution for 5G beamforming. Theoretical background, unique capabilities, and experimental verification are presented. The proposed DLL-HPC provides backwards compatibility with existing beamforming protocols as well as sub-millisecond beamsteering and automatic mobile target tracking with zero communication overhead. A proof-of-concept DLL-HPC prototype has been constructed from commercially available components to operate in the 5G NR-FR1 band, indicating that the technique can be readily adopted with available technology.
文摘A low-cost airborne sensor mote has been designed for deployment en masse to characterize atmospheric conditions. The designed environmental sensing mote, or eMote, was inspired by the natural shape of auto-rotating maple seeds to fall slowly and gather data along its descent. The eMotes measure and transmit temperature, air pressure, relative humidity, and wind speed estimates alongside GPS coordinates and timestamps. Up to 2080 eMotes can be deployed simultaneously with a 1 Hz sampling rate, but the system capacity increases by 2600 eMotes for every second added between samples. All measured and reported data falls within accuracy requirements for reporting with both the World Meteorological Organization (WMO) and the National Oceanic and Atmospheric Administration (NOAA). This paper presents the design and validation of the eMote system alongside discussions on the implementation of a large-scale, low-cost sensor network. The eMote represents unprecedented in-situ atmospheric measurement capabilities with the ability to deploy more than 260 times the number of sensing units as the most comparable commercially available dropsonde.
文摘The need for higher spatial/temporal resolution in-situ atmospheric sensing has been established by both weather and climate researchers. In order to address this need, an airborne wireless sensor network called GlobalSense is currently being developed. GlobalSense is based on low-cost airborne probes that collect environmental data as they fall slowly through the atmosphere and on portable base stations that receive the data being collected. This paper presents an overview of this GlobalSense system as well as preliminary results from ground-based system testing.