In recent years,neonicotinoids(NEOs)and organophosphate esters(OPEs)have been widely used as substitutes for traditional pesticides and brominated fame-retardants,respectively.Previous studies have shown that those co...In recent years,neonicotinoids(NEOs)and organophosphate esters(OPEs)have been widely used as substitutes for traditional pesticides and brominated fame-retardants,respectively.Previous studies have shown that those compounds can be frequently detected in environmental and human samples,are able to penetrate the placental barrier,and are toxic to animals.Thus,it is reasonable to speculate that NEOs and OPEs may have potential adverse effects in humans,especially during development.We employed a human embryonic stem cell differentiation-and liver S9 fraction metabolism-based fast screening model to assess the potential embryonic toxicity of those two types of chemicals.We show that four NEO and five OPE prototypes targeted mostly ectoderm specification,as neural ectoderm and neural crest genes were down-regulated,and surface ectoderm and placode markers up-regulated.Human liver S9 fraction's treatment could generally reduce the effects of the chemicals,except in a few specific instances,indicating the liver may detoxify NEOs and OPEs.Our findings suggest that NEOs and OPEs interfere with human early embryonic development.展开更多
In recent years,rapid industrial development has resulted in the production and exposure of a substantial number of compounds to the human body.This has created an urgent need in environmental toxicology for models th...In recent years,rapid industrial development has resulted in the production and exposure of a substantial number of compounds to the human body.This has created an urgent need in environmental toxicology for models that are efficient,accurate,and cost-effective in evaluating the health impacts of these compounds on humans.Over the past seven decades,various cancer cell lines and immortalized cell lines have made significant contributions to the advancement of research on organ toxicity.Pluripotent stem cell technology,especially toxicological models derived from pluripotent stem cells,presents modern environmental toxicologists with high-throughput,species-relevant,and predictive options.In this comprehensive review,we assess the characteristics of representative human cancer cell lines and immortalized cell lines in environmental toxicology,as well as introduce two distinct human pluripotent stem cell types and their innovative toxicological models.We explore their applications and prospects in the field of environmental toxicology,while also addressing the readiness of in vitro models to confront the emerging challenges of the future.展开更多
Environmental toxicology focuses on the effects of environmental chemicals on human health.To ensure a comprehensive assessment of exposure risks,it is crucial to consider populations that are already affected by pree...Environmental toxicology focuses on the effects of environmental chemicals on human health.To ensure a comprehensive assessment of exposure risks,it is crucial to consider populations that are already affected by preexisting medical conditions,as they may exhibit increased sensitivity to environmental contaminants.Various disease-specific animal models have been developed to simulate a range of diseases such as cancer,diabetes,and neurodevelopmental disorders.However,a significant limitation of these models is the presence of species variations.展开更多
Per-and polyfluorinated alkyl substances(PFASs) are commonly used in industrial processes and daily life products.Because they are persistent, they accumulate in the environment, wildlife and humans.Although many stud...Per-and polyfluorinated alkyl substances(PFASs) are commonly used in industrial processes and daily life products.Because they are persistent, they accumulate in the environment, wildlife and humans.Although many studies have focused on two of the most representative PFASs, PFOS and PFOA, the potential toxicity of short-chain PFASs has not yet been given sufficient attention.We used a battery of assays to evaluate the toxicity of several four-carbon and six-carbon perfluorinated sulfonates and carboxyl acids(PFBS,PFHxS, PFBA and PFHxA), with a human mesenchymal stem cell(hMSC) system.Our results demonstrate significant cyto-and potential developmental toxicity for all the compounds analyzed, with shared but also distinct mechanisms of toxicity.Moreover, the effects of PFBS and PFHxS were stronger than those of PFBA and PFHxA, but occurred at higher doses compared to PFOS or PFOA.展开更多
Tetrabromobisphenol A(TBBPA)is one of the most widely used brominated flame retardants and is extensively used in electronic equipment,furniture,plastics,and textiles.It is frequently detected in water,soil,air,and or...Tetrabromobisphenol A(TBBPA)is one of the most widely used brominated flame retardants and is extensively used in electronic equipment,furniture,plastics,and textiles.It is frequently detected in water,soil,air,and organisms,including humans,and has raised concerns in the scientific community regarding its potential adverse health effects.Human exposure to TBBPA is mainly via diet,respiration,and skin contact.Various in vivo and in vitro studies based on animal and cell models have demonstrated that TBBPA can induce multifaceted effects in cells and animals,and potentially exert hepatic,renal,neural,cardiac,and reproductive toxicities.Nevertheless,other reports have claimed that TBBPA might be a safe chemical.In this review,we re-evaluated most of the published TBBPA toxicological assessments with the goal of reaching a conclusion about its potential toxicity.We concluded that,although low TBBPA exposure levels and rapid metabolism in humans may signify that TBBPA is a safe chemical for the general population,particular attention should be paid to the potential effects of TBBPA on early developmental stages.展开更多
Air pollution has been linked to many health issues,including skin conditions,especially in children.Among all the atmospheric pollutants,ultrafine particles have been deemed very dangerous since they can readily pene...Air pollution has been linked to many health issues,including skin conditions,especially in children.Among all the atmospheric pollutants,ultrafine particles have been deemed very dangerous since they can readily penetrate the lungs and skin,and be absorbed into the bloodstream.Here,we employed a human embryonic stem cell(h ESC)-based differentiation system towards keratinocytes,to test the effects of ultrafine carbon particles,which mimic ambient ultrafine particles,at environment related concentrations.We found that10 ng/mL to 10μg/mL ultrafine carbon particles down-regulated the expression of the pluripotency marker SOX2 in h ESCs.Moreover,1μg/mL to 10μg/mL carbon particle treatments disrupted the keratinocyte differentiation,and up-regulated inflammationand psoriasis-related genes,such as IL-1β,IL-6,CXCL1,CXCL2,CXCL3,CCL20,CXCL8,and S100 A7 and S100 A9,respectively.Overall,our results provide a new insight into the potential developmental toxicity of atmospheric ultrafine particles.展开更多
Graphene oxide(GO)displays promising properties for biomedical applications including drug delivery and cancer therapeutics.However,GO exposure also raises safety concerns such as potential side effects on health.He...Graphene oxide(GO)displays promising properties for biomedical applications including drug delivery and cancer therapeutics.However,GO exposure also raises safety concerns such as potential side effects on health.Here,the biological effects of GO suspended in phosphate buffered saline(PBS)with or without 1% nonionic surfactant Tween 80 were investigated.Based on the ex vivo experiments,Tween 80 significantly affected the interaction between GO and peripheral blood from mice.GO suspension in PBS tended to provoke the aggregation of diluted blood cells,which could be prevented by the addition of Tween 80.After intravenous administration,GO suspension with or without 1% Tween 80 was quickly eliminated by the mononuclear phagocyte system.Nevertheless,GO suspension without Tween 80 showed greater accumulation in lungs than that containing 1% Tween 80.In contrast,less GO was found in livers for GO suspension compared to Tween 80 assisted GO suspension.Organs including hearts,livers,lungs,spleens,kidneys,brains,and testes did not reveal histological alterations.The indexes of peripheral blood showed no change upon GO exposure.Our results together demonstrated that Tween 80 could greatly alter GO's biological performance and determine the pattern of its biodistribution in mice.展开更多
The adverse effects of environmental pollution on our well-being have been intensively studied with many in vitro and in vivo systems. In our group, we focus on stem cell toxicology due to the multitude of embryonic s...The adverse effects of environmental pollution on our well-being have been intensively studied with many in vitro and in vivo systems. In our group, we focus on stem cell toxicology due to the multitude of embryonic stem cell(ESC) properties which can be exerted in toxicity assays. In fact, ESCs can differentiate in culture to mimic embryonic development in vivo, or specifically to virtually any kind of somatic cells. Here, we used the toxicant Bisphenol A(BPA), a chemical known as a hazard to infants and children, and showed that our stem cell toxicology system was able to efficiently recapitulate most of the toxic effects of BPA previously detected by in vitro system or animal tests. More precisely, we demonstrated that BPA affected the proper specification of germ layers during our in vitro mimicking of the embryonic development, as well as the establishment of neural ectoderm and neural progenitor cells.展开更多
基金supported by the Ministry of Science and Technology of the People’s Republic of China (No.2020YFA0907500)the National Natural Science Foundation of China (Nos.22150710514,22021003,and 22106174)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDPB200202)the Postdoc Science Foundation of China (No.2021M693322)。
文摘In recent years,neonicotinoids(NEOs)and organophosphate esters(OPEs)have been widely used as substitutes for traditional pesticides and brominated fame-retardants,respectively.Previous studies have shown that those compounds can be frequently detected in environmental and human samples,are able to penetrate the placental barrier,and are toxic to animals.Thus,it is reasonable to speculate that NEOs and OPEs may have potential adverse effects in humans,especially during development.We employed a human embryonic stem cell differentiation-and liver S9 fraction metabolism-based fast screening model to assess the potential embryonic toxicity of those two types of chemicals.We show that four NEO and five OPE prototypes targeted mostly ectoderm specification,as neural ectoderm and neural crest genes were down-regulated,and surface ectoderm and placode markers up-regulated.Human liver S9 fraction's treatment could generally reduce the effects of the chemicals,except in a few specific instances,indicating the liver may detoxify NEOs and OPEs.Our findings suggest that NEOs and OPEs interfere with human early embryonic development.
基金supported by the National Natural Science Foundation of China(grant numbers:22021003 and 22150710514)Beijing Natural Science Foundation(funding number:IS23120)Beijing Overseas Talents Center Highlevel Foreign Talent Project(funding number:C2022001).
文摘In recent years,rapid industrial development has resulted in the production and exposure of a substantial number of compounds to the human body.This has created an urgent need in environmental toxicology for models that are efficient,accurate,and cost-effective in evaluating the health impacts of these compounds on humans.Over the past seven decades,various cancer cell lines and immortalized cell lines have made significant contributions to the advancement of research on organ toxicity.Pluripotent stem cell technology,especially toxicological models derived from pluripotent stem cells,presents modern environmental toxicologists with high-throughput,species-relevant,and predictive options.In this comprehensive review,we assess the characteristics of representative human cancer cell lines and immortalized cell lines in environmental toxicology,as well as introduce two distinct human pluripotent stem cell types and their innovative toxicological models.We explore their applications and prospects in the field of environmental toxicology,while also addressing the readiness of in vitro models to confront the emerging challenges of the future.
基金supported by Beijing Municipal Natural Science Foundation(IS23120)the National Natural Science Foundation of China(22021003 and 22150710514)Beijing Overseas Talents Center High-Level Foreign Talent Project(C2022001).
文摘Environmental toxicology focuses on the effects of environmental chemicals on human health.To ensure a comprehensive assessment of exposure risks,it is crucial to consider populations that are already affected by preexisting medical conditions,as they may exhibit increased sensitivity to environmental contaminants.Various disease-specific animal models have been developed to simulate a range of diseases such as cancer,diabetes,and neurodevelopmental disorders.However,a significant limitation of these models is the presence of species variations.
基金supported by the National Natural Science Foundation of China (Nos.21876197, 21577166, 21707160)the Chinese Academy of Sciences (Nos.XDB14040301, 29[2015]30, QYZDJ-SSW-DQC017)the K.C.Wong Education Foundation.
文摘Per-and polyfluorinated alkyl substances(PFASs) are commonly used in industrial processes and daily life products.Because they are persistent, they accumulate in the environment, wildlife and humans.Although many studies have focused on two of the most representative PFASs, PFOS and PFOA, the potential toxicity of short-chain PFASs has not yet been given sufficient attention.We used a battery of assays to evaluate the toxicity of several four-carbon and six-carbon perfluorinated sulfonates and carboxyl acids(PFBS,PFHxS, PFBA and PFHxA), with a human mesenchymal stem cell(hMSC) system.Our results demonstrate significant cyto-and potential developmental toxicity for all the compounds analyzed, with shared but also distinct mechanisms of toxicity.Moreover, the effects of PFBS and PFHxS were stronger than those of PFBA and PFHxA, but occurred at higher doses compared to PFOS or PFOA.
基金supported by the National Natural Science Foun-dation of China(Nos.21707160 and 21876197)the Chinese Academy of Sciences(No.QYZDJ-SSW-DQC017)the K.C.Wong Education Foundation。
文摘Tetrabromobisphenol A(TBBPA)is one of the most widely used brominated flame retardants and is extensively used in electronic equipment,furniture,plastics,and textiles.It is frequently detected in water,soil,air,and organisms,including humans,and has raised concerns in the scientific community regarding its potential adverse health effects.Human exposure to TBBPA is mainly via diet,respiration,and skin contact.Various in vivo and in vitro studies based on animal and cell models have demonstrated that TBBPA can induce multifaceted effects in cells and animals,and potentially exert hepatic,renal,neural,cardiac,and reproductive toxicities.Nevertheless,other reports have claimed that TBBPA might be a safe chemical.In this review,we re-evaluated most of the published TBBPA toxicological assessments with the goal of reaching a conclusion about its potential toxicity.We concluded that,although low TBBPA exposure levels and rapid metabolism in humans may signify that TBBPA is a safe chemical for the general population,particular attention should be paid to the potential effects of TBBPA on early developmental stages.
基金supported by the National Natural Science Foundation of China(Nos.21876197,21577166,21707160)the Chinese Academy of Sciences(Nos.XDB14040301,QYZDJSSW-DQC017)the K.C.Wong Education Foundation
文摘Air pollution has been linked to many health issues,including skin conditions,especially in children.Among all the atmospheric pollutants,ultrafine particles have been deemed very dangerous since they can readily penetrate the lungs and skin,and be absorbed into the bloodstream.Here,we employed a human embryonic stem cell(h ESC)-based differentiation system towards keratinocytes,to test the effects of ultrafine carbon particles,which mimic ambient ultrafine particles,at environment related concentrations.We found that10 ng/mL to 10μg/mL ultrafine carbon particles down-regulated the expression of the pluripotency marker SOX2 in h ESCs.Moreover,1μg/mL to 10μg/mL carbon particle treatments disrupted the keratinocyte differentiation,and up-regulated inflammationand psoriasis-related genes,such as IL-1β,IL-6,CXCL1,CXCL2,CXCL3,CCL20,CXCL8,and S100 A7 and S100 A9,respectively.Overall,our results provide a new insight into the potential developmental toxicity of atmospheric ultrafine particles.
基金supported by the Knowledge Innovative Program of the Chinese Academy of Sciences (No.KZCX2-EW-404)the National Natural Science Foundation of China (No:21207152,20921063,21177151)
文摘Graphene oxide(GO)displays promising properties for biomedical applications including drug delivery and cancer therapeutics.However,GO exposure also raises safety concerns such as potential side effects on health.Here,the biological effects of GO suspended in phosphate buffered saline(PBS)with or without 1% nonionic surfactant Tween 80 were investigated.Based on the ex vivo experiments,Tween 80 significantly affected the interaction between GO and peripheral blood from mice.GO suspension in PBS tended to provoke the aggregation of diluted blood cells,which could be prevented by the addition of Tween 80.After intravenous administration,GO suspension with or without 1% Tween 80 was quickly eliminated by the mononuclear phagocyte system.Nevertheless,GO suspension without Tween 80 showed greater accumulation in lungs than that containing 1% Tween 80.In contrast,less GO was found in livers for GO suspension compared to Tween 80 assisted GO suspension.Organs including hearts,livers,lungs,spleens,kidneys,brains,and testes did not reveal histological alterations.The indexes of peripheral blood showed no change upon GO exposure.Our results together demonstrated that Tween 80 could greatly alter GO's biological performance and determine the pattern of its biodistribution in mice.
基金supported by a Chinese Academy of Sciences(CAS)Strategic Leading Science&Technology Program grant(XDB14040301)by the Hundred Talent Program of CAS(121311ZXPP2014004)at the Research Center for Eco-Environmental Sciences(RCEES),CAS
文摘The adverse effects of environmental pollution on our well-being have been intensively studied with many in vitro and in vivo systems. In our group, we focus on stem cell toxicology due to the multitude of embryonic stem cell(ESC) properties which can be exerted in toxicity assays. In fact, ESCs can differentiate in culture to mimic embryonic development in vivo, or specifically to virtually any kind of somatic cells. Here, we used the toxicant Bisphenol A(BPA), a chemical known as a hazard to infants and children, and showed that our stem cell toxicology system was able to efficiently recapitulate most of the toxic effects of BPA previously detected by in vitro system or animal tests. More precisely, we demonstrated that BPA affected the proper specification of germ layers during our in vitro mimicking of the embryonic development, as well as the establishment of neural ectoderm and neural progenitor cells.