云滴谱离散度是云雨自动转化过程参数化中不可忽视的重要参数,对地面降水有着重要的影响。本文利用WRF-Chem(Weather Research and Forecast coupled with Chemistry)模式,对发生在2019年1月3~6日长江中下游地区的一次降水过程进行了模...云滴谱离散度是云雨自动转化过程参数化中不可忽视的重要参数,对地面降水有着重要的影响。本文利用WRF-Chem(Weather Research and Forecast coupled with Chemistry)模式,对发生在2019年1月3~6日长江中下游地区的一次降水过程进行了模拟。在清洁和污染的气溶胶背景下,设定不同的云滴谱离散度的数值(0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9和1.0),研究云降水微物理的变化。结果表明,该个例降水主要来源于云雨自动转化以及云雨碰并过程。在清洁条件下的地面累计降水量大于在污染条件下的累计降水量,这是因为在清洁条件下云滴数浓度小,有利于云雨自动转化以及云雨碰并过程。虽然云雨自动转化以及云雨碰并过程占主导,但导致地面累计降水量随云滴谱离散度增大而增大的主要原因是:随着云滴谱离散度的增大,冰粒子质量浓度增大,导致融化过程增强,产生更多的雨滴,从而增强地表降水。所得结果将提高我们对云降水对气溶胶和离散度响应过程的理论认识。展开更多
为指导复杂地形地质条件下艰险山区铁路--川藏铁路的重大桥梁工程桥位选择,针对川藏铁路沿线特征,以减灾为核心,以工程技术、工程经济、施工条件、地形地质、水文气候、生态影响6个方面17个指标建立指标体系,基于CRITIC(Criteria Import...为指导复杂地形地质条件下艰险山区铁路--川藏铁路的重大桥梁工程桥位选择,针对川藏铁路沿线特征,以减灾为核心,以工程技术、工程经济、施工条件、地形地质、水文气候、生态影响6个方面17个指标建立指标体系,基于CRITIC(Criteria Importance Though Intercrieria Correlation, CRITIC)-G1(Order Relation Analysis Method, G1)法组合赋权和Vague集-TOPSIS法(Technique for Order Preference by Similarity to an Ideal Solution, TOPSIS)多属性模糊决策建立川藏铁路重大桥梁桥位评价模型。应用模型对川藏铁路怒江大桥桥位进行评价,得到丢攻高桥方案为最优桥位方案。结果表明:指标体系对川藏铁路桥位方案评价具全面性和针对性;CRITIC修正G1法组合赋权能提高指标赋权合理性;Vague集-TOPSIS法模糊决策能提高川藏铁路重大桥梁桥位模糊评价的准确性,模型评价结果合理可靠,可为铁路重大桥梁桥位选择提供合理可行的决策方法。展开更多
铁路线路速度目标值的选择,直接影响铁路线路设计的其他主要技术标准的选择、车辆选型、设备配置、工程投资等。选择一种科学有效的模型,对速度目标值方案进行综合评价对铁路线路设计的后续工作具有重要意义。利用层次分析法原理建立速...铁路线路速度目标值的选择,直接影响铁路线路设计的其他主要技术标准的选择、车辆选型、设备配置、工程投资等。选择一种科学有效的模型,对速度目标值方案进行综合评价对铁路线路设计的后续工作具有重要意义。利用层次分析法原理建立速度目标值综合评价体系,引入CRITIC-G1法(Criteria Importance Though Intercrieria Correlation-Order Relation Analysis Method,CRITIC-G1)的综合赋权方法计算各评价指标的权重。采用基于灰色关联改进的TOPSIS(Technique for Order Preference by Similarity to an Ideal Solution,TOPSIS)多目标决策方法确定最优方案。以西安-江油段速度目标值方案比选为例验证模型的合理性,计算结果表明速度目标值为350km/h的方案最优,与工程实际相符。结果表明:本文提出的基于CRITIC-G1的综合评价方法,能够体现各评价指标间的差异性和相关性,同时也能体现主观经验的偏好性,是一种较为科学、合理的评价方法.展开更多
Cloud microphysical properties including liquid and ice particle number concentration (NC), liquid water content (LWC), ice water content (IWC) and effective radius (RE) were retrieved from CloudSat data for a...Cloud microphysical properties including liquid and ice particle number concentration (NC), liquid water content (LWC), ice water content (IWC) and effective radius (RE) were retrieved from CloudSat data for a weakly convective and a widespread stratus cloud. Within the mixed-phase cloud layers, liquid-phase fractions needed to be assumed in the data retrieval process, and one existing linear (Pl) and two exponential (P2 and P3) functions, which estimate the liquid-phase fraction as a function of subfreezing temperature (from -20℃ to 0℃), were tested. The retrieved NC, LWC, IWC and RE using Pl were on average larger than airplane measurements in the same cloud layer, Function P2 performed better than p1 or P3 in retrieving the NCs of cloud droplets in the convective cloud, while function Pl performed better in the stratus cloud. Function P3 performed better in LWC estimation in both convective and stratus clouds. The REs of cloud droplets calculated using the retrieved cloud droplet NC and LWC were closer to the values of in situ observations than those retrieved directly using the Pl function. The retrieved NCs of ice particles in both convective and stratus clouds, on the assumption of liquid-phase fraction during the retrieval of liquid droplet NCs, were closer to those of airplane observations than on the assumption of function P1.展开更多
文摘云滴谱离散度是云雨自动转化过程参数化中不可忽视的重要参数,对地面降水有着重要的影响。本文利用WRF-Chem(Weather Research and Forecast coupled with Chemistry)模式,对发生在2019年1月3~6日长江中下游地区的一次降水过程进行了模拟。在清洁和污染的气溶胶背景下,设定不同的云滴谱离散度的数值(0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9和1.0),研究云降水微物理的变化。结果表明,该个例降水主要来源于云雨自动转化以及云雨碰并过程。在清洁条件下的地面累计降水量大于在污染条件下的累计降水量,这是因为在清洁条件下云滴数浓度小,有利于云雨自动转化以及云雨碰并过程。虽然云雨自动转化以及云雨碰并过程占主导,但导致地面累计降水量随云滴谱离散度增大而增大的主要原因是:随着云滴谱离散度的增大,冰粒子质量浓度增大,导致融化过程增强,产生更多的雨滴,从而增强地表降水。所得结果将提高我们对云降水对气溶胶和离散度响应过程的理论认识。
文摘为指导复杂地形地质条件下艰险山区铁路--川藏铁路的重大桥梁工程桥位选择,针对川藏铁路沿线特征,以减灾为核心,以工程技术、工程经济、施工条件、地形地质、水文气候、生态影响6个方面17个指标建立指标体系,基于CRITIC(Criteria Importance Though Intercrieria Correlation, CRITIC)-G1(Order Relation Analysis Method, G1)法组合赋权和Vague集-TOPSIS法(Technique for Order Preference by Similarity to an Ideal Solution, TOPSIS)多属性模糊决策建立川藏铁路重大桥梁桥位评价模型。应用模型对川藏铁路怒江大桥桥位进行评价,得到丢攻高桥方案为最优桥位方案。结果表明:指标体系对川藏铁路桥位方案评价具全面性和针对性;CRITIC修正G1法组合赋权能提高指标赋权合理性;Vague集-TOPSIS法模糊决策能提高川藏铁路重大桥梁桥位模糊评价的准确性,模型评价结果合理可靠,可为铁路重大桥梁桥位选择提供合理可行的决策方法。
文摘铁路线路速度目标值的选择,直接影响铁路线路设计的其他主要技术标准的选择、车辆选型、设备配置、工程投资等。选择一种科学有效的模型,对速度目标值方案进行综合评价对铁路线路设计的后续工作具有重要意义。利用层次分析法原理建立速度目标值综合评价体系,引入CRITIC-G1法(Criteria Importance Though Intercrieria Correlation-Order Relation Analysis Method,CRITIC-G1)的综合赋权方法计算各评价指标的权重。采用基于灰色关联改进的TOPSIS(Technique for Order Preference by Similarity to an Ideal Solution,TOPSIS)多目标决策方法确定最优方案。以西安-江油段速度目标值方案比选为例验证模型的合理性,计算结果表明速度目标值为350km/h的方案最优,与工程实际相符。结果表明:本文提出的基于CRITIC-G1的综合评价方法,能够体现各评价指标间的差异性和相关性,同时也能体现主观经验的偏好性,是一种较为科学、合理的评价方法.
基金funded by the National Natural Science Foundation of China(Grant No.41475035)the Natural Science Foundation of Jiangsu Province(Grant No.BK20131433)+1 种基金the Foundations from KLME of NUIST(Grant No.KLME1206)the Key Laboratory for Aerosol–Cloud–Precipitation of China Meteorological Administration of NUIST(Grant No.KDW1203)
文摘Cloud microphysical properties including liquid and ice particle number concentration (NC), liquid water content (LWC), ice water content (IWC) and effective radius (RE) were retrieved from CloudSat data for a weakly convective and a widespread stratus cloud. Within the mixed-phase cloud layers, liquid-phase fractions needed to be assumed in the data retrieval process, and one existing linear (Pl) and two exponential (P2 and P3) functions, which estimate the liquid-phase fraction as a function of subfreezing temperature (from -20℃ to 0℃), were tested. The retrieved NC, LWC, IWC and RE using Pl were on average larger than airplane measurements in the same cloud layer, Function P2 performed better than p1 or P3 in retrieving the NCs of cloud droplets in the convective cloud, while function Pl performed better in the stratus cloud. Function P3 performed better in LWC estimation in both convective and stratus clouds. The REs of cloud droplets calculated using the retrieved cloud droplet NC and LWC were closer to the values of in situ observations than those retrieved directly using the Pl function. The retrieved NCs of ice particles in both convective and stratus clouds, on the assumption of liquid-phase fraction during the retrieval of liquid droplet NCs, were closer to those of airplane observations than on the assumption of function P1.