Because of rich solar resource and low land cost, a lot of large-scale ground-based grid-connected PV systems have been built in Northwest China. In this paper, some shading phenomena on a grid-connected PV system inN...Because of rich solar resource and low land cost, a lot of large-scale ground-based grid-connected PV systems have been built in Northwest China. In this paper, some shading phenomena on a grid-connected PV system inNorthwest Chinaare classified and analyzed. Through the I-V curve test of PV modules, it can be seen that dust influence system performance of the grid-connected PV system. And the experimental results have shown that shading could affect the electrical properties of PV modules. Meanwhile, same shading area on different shading positions could have different impacts on the identical PV module.展开更多
High temperature annealing was performed on upgraded metallurgical grade multicrystalline silicon (UMG multi-Si) wafers with a purity of 99.999%. The samples were mechanically polished and chemically etched, and then ...High temperature annealing was performed on upgraded metallurgical grade multicrystalline silicon (UMG multi-Si) wafers with a purity of 99.999%. The samples were mechanically polished and chemically etched, and then the microstructures were observed by a scanning electron microscope (SEM). The minority carrier lifetime and resistivity of the samples were measured using microwave photoconductance decay and four-point probe techniques, respectively. The results show that the electrical properties of the samples decrease rather than increase as the annealing temperature increases, while the number of dislocations in bulk Si reduced or even disappeared after annealing for 6 hours at 1100–1400°C. It is considered that the structural microdefects induced by the high concentration of metal impurities (including interstitial or substitutional impurities and nanoscale precipitates) determine the minority carrier recombination activity and thus the electrical properties of UMG multi-Si wafers rather than dislocations in bulk Si.展开更多
The use of transparent conducting oxide(TCO)as a substrate in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)thin-film solar cells allows for advanced applications,such as bifacial,semitransparent,and tandem solar cells with the capabil...The use of transparent conducting oxide(TCO)as a substrate in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)thin-film solar cells allows for advanced applications,such as bifacial,semitransparent,and tandem solar cells with the capability to increase power density generation.However,the efficiency of this kind of solar cell is still below 6% based on the low-cost solution process.In this work,we develop a composition gradient strategy and demonstrate a 6.82% efficient CZTSSe solar cell on F:SnO_(2)(FTO)substrate under the ambient condition.The composition gradient is realized by simply depositing the precursor inks with different Zn/Sn ratios.To verify that the high performance of the solar cell is attributed to the composition gradient strategy rather than the sole change of the Zn/Sn ratio,devices based on absorbers with varied Zn/Sn ratios are fabricated.Furthermore,the structure and surface morphology of the CZTSSe films with/without composition gradients are examined.The presence of elemental gradient through the depth of the CZTSSe films before and after annealing is confirmed by secondary ion mass spectroscopy analysis.It is found that the composition gradient enhances the crystallinity of the absorber,reduces the surface roughness as well as device parasitic losses,contributing to a higher fill factor,open-circuit voltage,and conversion efficiency.展开更多
Al-doped zinc oxide (ZnO:Al,AZO) films were deposited on glass substrates using a reactive mid-frequency (MF) magnetron sputtering process with rotating cathodes.The influence of deposition parameters on structur...Al-doped zinc oxide (ZnO:Al,AZO) films were deposited on glass substrates using a reactive mid-frequency (MF) magnetron sputtering process with rotating cathodes.The influence of deposition parameters on structural,electrical and optical properties of AZO films is investigated.It is observed that the rotating magnetron targets exhibited a sputtered metallic surface over a wider range,and there is no re-deposition zone between the racetracks.The films deposited at static deposition mode demonstrate more homogenous in thickness and resistivity across the target surface compared with conventional rectangular targets.The films deposited under the proper conditions show a regular cone-shaped grain surface and densely packed columnar structure.The minimum resistivity of 3.16×10-4 ·cm was obtained for the film prepared at substrate temperature of 150 C,gas pressure of 640 MPa and oxygen partial pressure of 34 MPa.展开更多
To find out the causation of inhomogeneous minority carrier lifetime distribution in high quality multicrystalline silicon (mc-Si) wafers, impurities and lattice defects were systematically studied by means of Fouri...To find out the causation of inhomogeneous minority carrier lifetime distribution in high quality multicrystalline silicon (mc-Si) wafers, impurities and lattice defects were systematically studied by means of Fourier transform infrared (FTIR) spectroscopy and metallography, Inhomogeneously distributed oxygen impurity and dislocations were demonstrated to be key leading factors, and the restriction mechanism was discussed. Scattering process caused by ionized impurities and dislocations decreased carrier mobility, while carrier concentration was not significantly affected. Measurements showed that resistivity was higher and more dispersive in low lifetime area. Solar cells were fabricated with these wafers. Cells' efficiency of inhomogeneous ones exhibited averagely 0.27% lower than the regular ones in absolute terms. Recombination centers and leakage loss induced by dislocations and impurities led to the reduction in shunt resistors and open-circuit voltage, and then affected the performance of cells.展开更多
文摘Because of rich solar resource and low land cost, a lot of large-scale ground-based grid-connected PV systems have been built in Northwest China. In this paper, some shading phenomena on a grid-connected PV system inNorthwest Chinaare classified and analyzed. Through the I-V curve test of PV modules, it can be seen that dust influence system performance of the grid-connected PV system. And the experimental results have shown that shading could affect the electrical properties of PV modules. Meanwhile, same shading area on different shading positions could have different impacts on the identical PV module.
基金supported by the National Natural Science Foundation of China (50802118)
文摘High temperature annealing was performed on upgraded metallurgical grade multicrystalline silicon (UMG multi-Si) wafers with a purity of 99.999%. The samples were mechanically polished and chemically etched, and then the microstructures were observed by a scanning electron microscope (SEM). The minority carrier lifetime and resistivity of the samples were measured using microwave photoconductance decay and four-point probe techniques, respectively. The results show that the electrical properties of the samples decrease rather than increase as the annealing temperature increases, while the number of dislocations in bulk Si reduced or even disappeared after annealing for 6 hours at 1100–1400°C. It is considered that the structural microdefects induced by the high concentration of metal impurities (including interstitial or substitutional impurities and nanoscale precipitates) determine the minority carrier recombination activity and thus the electrical properties of UMG multi-Si wafers rather than dislocations in bulk Si.
基金supported by the National Natural Science Foundation of China(62074168)the Fundamental Research Foundations for the Central Universities(20lgpy04)。
文摘The use of transparent conducting oxide(TCO)as a substrate in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)thin-film solar cells allows for advanced applications,such as bifacial,semitransparent,and tandem solar cells with the capability to increase power density generation.However,the efficiency of this kind of solar cell is still below 6% based on the low-cost solution process.In this work,we develop a composition gradient strategy and demonstrate a 6.82% efficient CZTSSe solar cell on F:SnO_(2)(FTO)substrate under the ambient condition.The composition gradient is realized by simply depositing the precursor inks with different Zn/Sn ratios.To verify that the high performance of the solar cell is attributed to the composition gradient strategy rather than the sole change of the Zn/Sn ratio,devices based on absorbers with varied Zn/Sn ratios are fabricated.Furthermore,the structure and surface morphology of the CZTSSe films with/without composition gradients are examined.The presence of elemental gradient through the depth of the CZTSSe films before and after annealing is confirmed by secondary ion mass spectroscopy analysis.It is found that the composition gradient enhances the crystallinity of the absorber,reduces the surface roughness as well as device parasitic losses,contributing to a higher fill factor,open-circuit voltage,and conversion efficiency.
文摘Al-doped zinc oxide (ZnO:Al,AZO) films were deposited on glass substrates using a reactive mid-frequency (MF) magnetron sputtering process with rotating cathodes.The influence of deposition parameters on structural,electrical and optical properties of AZO films is investigated.It is observed that the rotating magnetron targets exhibited a sputtered metallic surface over a wider range,and there is no re-deposition zone between the racetracks.The films deposited at static deposition mode demonstrate more homogenous in thickness and resistivity across the target surface compared with conventional rectangular targets.The films deposited under the proper conditions show a regular cone-shaped grain surface and densely packed columnar structure.The minimum resistivity of 3.16×10-4 ·cm was obtained for the film prepared at substrate temperature of 150 C,gas pressure of 640 MPa and oxygen partial pressure of 34 MPa.
基金financially supported by the Department of Education of Guangdong Province(Grant No.2013CXZDA002)Guangzhou Science and Technology Department(Grant No.2014Y2-00221)
文摘To find out the causation of inhomogeneous minority carrier lifetime distribution in high quality multicrystalline silicon (mc-Si) wafers, impurities and lattice defects were systematically studied by means of Fourier transform infrared (FTIR) spectroscopy and metallography, Inhomogeneously distributed oxygen impurity and dislocations were demonstrated to be key leading factors, and the restriction mechanism was discussed. Scattering process caused by ionized impurities and dislocations decreased carrier mobility, while carrier concentration was not significantly affected. Measurements showed that resistivity was higher and more dispersive in low lifetime area. Solar cells were fabricated with these wafers. Cells' efficiency of inhomogeneous ones exhibited averagely 0.27% lower than the regular ones in absolute terms. Recombination centers and leakage loss induced by dislocations and impurities led to the reduction in shunt resistors and open-circuit voltage, and then affected the performance of cells.