Research on water-splitting electrocatalysts is crucial to establishing a solution to the energy crisis.Herein,we report a facile bottom-up strategy for the preparation of high performance supported electrocatalysts f...Research on water-splitting electrocatalysts is crucial to establishing a solution to the energy crisis.Herein,we report a facile bottom-up strategy for the preparation of high performance supported electrocatalysts for overall water-splitting reaction via a rationally designed defect covalent triazine frameworks(CTFs)support.Specifically,defect CTFs are obtained via binary-precursor polymerization,followed by loading Ru nanoparticles(Ru/D-CTFs-900)with high HER performance at a current density of 10 mA cm-2.The overpotential is only 17 mV.Calcination of the resultant Ru–RuO2/D-CTFs-300 in air,produces excellent OER performance with 190 mV overpotential(at 10 mA cm-2).Furthermore,overall water splitting measurements reveal the potential of 1.47 V,which is better than the majority of the reported Ru-based catalysts.Moreover,density functional theory calculation results show that excellent electrocatalytic properties are attributed to the synergistic effect of Ru nanoparticles and carbon support.展开更多
基金National Natural Science Foundation of China(Grant nos.21671172,21625604,21706229,21776251)Zhejiang Provincial Natural Science Foundation of China(Grant no.LR19B010001)open fund of State Key Laboratory of Structural Chemistry(No.20170036)。
文摘Research on water-splitting electrocatalysts is crucial to establishing a solution to the energy crisis.Herein,we report a facile bottom-up strategy for the preparation of high performance supported electrocatalysts for overall water-splitting reaction via a rationally designed defect covalent triazine frameworks(CTFs)support.Specifically,defect CTFs are obtained via binary-precursor polymerization,followed by loading Ru nanoparticles(Ru/D-CTFs-900)with high HER performance at a current density of 10 mA cm-2.The overpotential is only 17 mV.Calcination of the resultant Ru–RuO2/D-CTFs-300 in air,produces excellent OER performance with 190 mV overpotential(at 10 mA cm-2).Furthermore,overall water splitting measurements reveal the potential of 1.47 V,which is better than the majority of the reported Ru-based catalysts.Moreover,density functional theory calculation results show that excellent electrocatalytic properties are attributed to the synergistic effect of Ru nanoparticles and carbon support.