Global mean sea level budget is rigorously adjusted during the period 2005-2015.The emphasis is to provide the best estimates for the linear rates of changes(trends)of the global mean sea level budget components durin...Global mean sea level budget is rigorously adjusted during the period 2005-2015.The emphasis is to provide the best estimates for the linear rates of changes(trends)of the global mean sea level budget components during this period subject to the constraint:Earth’s hydrosphere conserves water.The newly simultaneously adjusted trends of the budget components suggest a larger correction for the global mean sea level trend implicated by the other budget components’trends under the budget constraint.The simultaneous estimation of the linear trends of the budget components subject to the constraint for closure improves their uncertainties and enables a holistic assessment of the global mean sea budget,which has implications for future sea level science studies,including the future Intergovernmental Panel on Climate Change(IPCC)Assessment Reports,and the US Climate Assessment Reports.展开更多
Surgical resection remains the prefer option for bladder cancer treatment.However,the effectiveness of surgery is usually limited for the high recurrence rate and poor prognosis.Consequently,intravesical chemotherapy ...Surgical resection remains the prefer option for bladder cancer treatment.However,the effectiveness of surgery is usually limited for the high recurrence rate and poor prognosis.Consequently,intravesical chemotherapy synergize with immunotherapy in situ is an attractive way to improve therapeutic effect.Herein,a combined strategy based on thermo-sensitive PLEL hydrogel drug delivery system was developed.GEM loaded PLEL hydrogel was intravesical instilled to kill tumor cells directly,then PLEL hydrogel incorporated with CpG was injected into both groins subcutaneously to promote immune responses synergize with GEM.The results demonstrated that drug loaded PLEL hydrogel had a sol-gel phase transition behavior in response to physiological temperature and presented sustained drug release,and the PLEL-assisted combination therapy could have better tumor suppression effect and stronger immunostimulating effect in vivo.Hence,this combined treatment with PLEL hydrogel system has great potential and suggests a clinically-relevant and valuable option for bladder cancer.展开更多
With increasing demand to reduce the carbon emission of buildings,it is crucial to quantify the life cycle envi-ronmental impact of new buildings,including the environmental impact due to natural hazards,such as earth...With increasing demand to reduce the carbon emission of buildings,it is crucial to quantify the life cycle envi-ronmental impact of new buildings,including the environmental impact due to natural hazards,such as earth-quakes.This study presents a novel comprehensive probabilistic framework to quantify the environmental impact of buildings,including uncertainties in the material extraction and production,transportation,construction,seis-mic exposure and aging(including deterioration),and end-of-life stages.The developed framework is used to quantify the environmental impact of a 3-story residential building located in Vancouver,Canada.The results show that there is a significant variation in the environmental impact of the prototype building in each stage of the life cycle assessment.If the prototype building is hit by the design level earthquake,it is expected that the median environmental impact of the prototype will be further increased by 42%.In addition,by accounting for the probability of occurrence of different earthquakes within a 50-year design life of the prototype building,the earthquake related damage will result in an additional 5%of the initial carbon emission of the building.This shows the importance of including earthquake hazard and deterioration in whole building life cycle assessments.展开更多
Self-centering systems exhibit superior performance during earthquake shaking with lower damage and less resid-ual deformations.Although the equivalent static force design procedure is the commonly used one for most s...Self-centering systems exhibit superior performance during earthquake shaking with lower damage and less resid-ual deformations.Although the equivalent static force design procedure is the commonly used one for most structural systems for seismic applications,the cumulative damage and the effective duration of earthquakes cannot be explicitly considered,which has significantly affected the behaviors and post-earthquake performance of self-centering systems.Energy-based design theory(EBDT),which introduces the energy demand as the crit-ical parameter to establish relations with structural damage,has gained attention around the world in recent decades.The EBDT can provide comprehensive considerations for structural responses and damage in design procedures,especially for self-centering systems.However,few researches and actual energy design projects fo-cus on the use of EBDT for self-centering systems.This paper intends to present thorough review of several critical issues in EBDT.Meanwhile,pivotal gaps that need to be further investigated towards the application of EBDT to self-centering systems are identified and discussed in the paper.展开更多
Balloon type cross laminated timber(CLT)rocking shear walls are a novel seismic force resisting system.In this paper,the seismic performance of four 12-story balloon type CLT rocking shear walls,designed by a structur...Balloon type cross laminated timber(CLT)rocking shear walls are a novel seismic force resisting system.In this paper,the seismic performance of four 12-story balloon type CLT rocking shear walls,designed by a structural engineering firm located in Vancouver(Canada)using the performance-based design procedure outlined in the technical guideline published by the Canadian Construction Materials center(CCMC)/National Research Council Canada(NRC),is assessed.The seismic performance of the prototype CLT rocking shear walls was investigated using nonlinear time history analyses.Robust nonlinear finite element models were developed using OpenSees and the nonlinear behavior of the displacement-controlled components was calibrated using available experimental data.A detailed site-specific hazard analysis was conducted and sets of ground motions suitable for the prototype buildings were selected.The ground motions were used in a series of incremental dynamic analyses(IDAs)to quantify the adjustable collapse margin ratio(ACMR)of the prototype balloon type CLT rocking shear walls.The results show that the prototype balloon type CLT rocking shear walls designed using the performance-based design procedure outlined in the CCMC/NRC technical guideline have sufficient ACMR when compared to the acceptable limits recommended by FEMA P695.展开更多
基金partially supported by the Natural Science Foundation of China(Grant No.41974040)。
文摘Global mean sea level budget is rigorously adjusted during the period 2005-2015.The emphasis is to provide the best estimates for the linear rates of changes(trends)of the global mean sea level budget components during this period subject to the constraint:Earth’s hydrosphere conserves water.The newly simultaneously adjusted trends of the budget components suggest a larger correction for the global mean sea level trend implicated by the other budget components’trends under the budget constraint.The simultaneous estimation of the linear trends of the budget components subject to the constraint for closure improves their uncertainties and enables a holistic assessment of the global mean sea budget,which has implications for future sea level science studies,including the future Intergovernmental Panel on Climate Change(IPCC)Assessment Reports,and the US Climate Assessment Reports.
基金financial support from the National Natural Science Foundation of China(U21A20417,31930067)1⋅3⋅5 project for disciplines of excellence,West China Hospital,Sichuan University(ZYGD18002).
文摘Surgical resection remains the prefer option for bladder cancer treatment.However,the effectiveness of surgery is usually limited for the high recurrence rate and poor prognosis.Consequently,intravesical chemotherapy synergize with immunotherapy in situ is an attractive way to improve therapeutic effect.Herein,a combined strategy based on thermo-sensitive PLEL hydrogel drug delivery system was developed.GEM loaded PLEL hydrogel was intravesical instilled to kill tumor cells directly,then PLEL hydrogel incorporated with CpG was injected into both groins subcutaneously to promote immune responses synergize with GEM.The results demonstrated that drug loaded PLEL hydrogel had a sol-gel phase transition behavior in response to physiological temperature and presented sustained drug release,and the PLEL-assisted combination therapy could have better tumor suppression effect and stronger immunostimulating effect in vivo.Hence,this combined treatment with PLEL hydrogel system has great potential and suggests a clinically-relevant and valuable option for bladder cancer.
文摘With increasing demand to reduce the carbon emission of buildings,it is crucial to quantify the life cycle envi-ronmental impact of new buildings,including the environmental impact due to natural hazards,such as earth-quakes.This study presents a novel comprehensive probabilistic framework to quantify the environmental impact of buildings,including uncertainties in the material extraction and production,transportation,construction,seis-mic exposure and aging(including deterioration),and end-of-life stages.The developed framework is used to quantify the environmental impact of a 3-story residential building located in Vancouver,Canada.The results show that there is a significant variation in the environmental impact of the prototype building in each stage of the life cycle assessment.If the prototype building is hit by the design level earthquake,it is expected that the median environmental impact of the prototype will be further increased by 42%.In addition,by accounting for the probability of occurrence of different earthquakes within a 50-year design life of the prototype building,the earthquake related damage will result in an additional 5%of the initial carbon emission of the building.This shows the importance of including earthquake hazard and deterioration in whole building life cycle assessments.
基金support received from the Distinguished Young Scientist Fund of National Natural Science Foun-dation of China(Grant No.52025083)the National Natural Science Foundation of China(Grant No.51778486)the Shanghai Science and Technology Innovation Action Plan(Grant No.19DZ1201200).
文摘Self-centering systems exhibit superior performance during earthquake shaking with lower damage and less resid-ual deformations.Although the equivalent static force design procedure is the commonly used one for most structural systems for seismic applications,the cumulative damage and the effective duration of earthquakes cannot be explicitly considered,which has significantly affected the behaviors and post-earthquake performance of self-centering systems.Energy-based design theory(EBDT),which introduces the energy demand as the crit-ical parameter to establish relations with structural damage,has gained attention around the world in recent decades.The EBDT can provide comprehensive considerations for structural responses and damage in design procedures,especially for self-centering systems.However,few researches and actual energy design projects fo-cus on the use of EBDT for self-centering systems.This paper intends to present thorough review of several critical issues in EBDT.Meanwhile,pivotal gaps that need to be further investigated towards the application of EBDT to self-centering systems are identified and discussed in the paper.
基金funding provided by the International Joint Research Laboratory of Earthquake Engineering(ILEE)the Natural Sciences and Engineering Research Council(NSERC).
文摘Balloon type cross laminated timber(CLT)rocking shear walls are a novel seismic force resisting system.In this paper,the seismic performance of four 12-story balloon type CLT rocking shear walls,designed by a structural engineering firm located in Vancouver(Canada)using the performance-based design procedure outlined in the technical guideline published by the Canadian Construction Materials center(CCMC)/National Research Council Canada(NRC),is assessed.The seismic performance of the prototype CLT rocking shear walls was investigated using nonlinear time history analyses.Robust nonlinear finite element models were developed using OpenSees and the nonlinear behavior of the displacement-controlled components was calibrated using available experimental data.A detailed site-specific hazard analysis was conducted and sets of ground motions suitable for the prototype buildings were selected.The ground motions were used in a series of incremental dynamic analyses(IDAs)to quantify the adjustable collapse margin ratio(ACMR)of the prototype balloon type CLT rocking shear walls.The results show that the prototype balloon type CLT rocking shear walls designed using the performance-based design procedure outlined in the CCMC/NRC technical guideline have sufficient ACMR when compared to the acceptable limits recommended by FEMA P695.