In 2023,Baishideng Publishing Group(Baishideng)routinely published 47 openaccess journals,including 46 English-language journals and 1 Chinese-language journal.Our successes were accomplished through the collective de...In 2023,Baishideng Publishing Group(Baishideng)routinely published 47 openaccess journals,including 46 English-language journals and 1 Chinese-language journal.Our successes were accomplished through the collective dedicated efforts of Baishideng staffs,Editorial Board Members,and Peer Reviewers.Among these 47 Baishideng journals,7 are included in the Science Citation Index Expanded(SCIE)and 6 in the Emerging Sources Citation Index(ESCI).With the support of Baishideng authors,company staffs,Editorial Board Members,and Peer Reviewers,the publication work of 2023 is about to be successfully completed.This editorial summarizes the 2023 activities and accomplishments of the 13 SCIEand ESCI-indexed Baishideng journals,outlines the Baishideng publishing policy changes and additions made this year,and highlights the unique advantages of Baishideng journals.展开更多
Highly pathogenic avian influenza(HPAI)subtype H5Nx viruses have spread globally and are a major concern for poultry,wild birds,mammals,and even humans(de Vries et al.2015;Zeng et al.2022).The hemagglutinin(HA)genes o...Highly pathogenic avian influenza(HPAI)subtype H5Nx viruses have spread globally and are a major concern for poultry,wild birds,mammals,and even humans(de Vries et al.2015;Zeng et al.2022).The hemagglutinin(HA)genes of H5 subtype viruses have evolved into multiple clades and some of these clades have been further divided into subclades(Cui et al.2022).Clade 2.3.4.4H5N8 HPAI viruses(HPAIVs)have caused several waves of disease outbreaks in wild birds and domestic poultry(Wang et al.2022).展开更多
Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury.Microglia and astrocytes play key roles in the spinal cord injury micro-e...Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury.Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction.However,the mechanisms involved remain unclear.In this study,we found that after spinal cord injury,resting microglia(M0)were polarized into pro-inflammatory phenotypes(MG1 and MG3),while resting astrocytes were polarized into reactive and scar-forming phenotypes.The expression of growth arrest-specific 6(Gas6)and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury.In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia,and even inhibited the cross-regulation between them.We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway.This,in turn,inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways.In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord,thereby promoting tissue repair and motor function recovery.Overall,Gas6 may play a role in the treatment of spinal cord injury.It can inhibit the inflammatory pathway of microglia and polarization of astrocytes,attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment,and thereby alleviate local inflammation and reduce scar formation in the spinal cord.展开更多
Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe n...Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage.Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation,and plays an important role in the pathological process of ischemic stroke.However,there are few studies on oligodendrocyte progenitor cell ferroptosis.We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia.Bioinformatics analysis suggested that perilipin-2(PLIN2)was involved in oligodendrocyte progenitor cell ferroptosis.PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation.For further investigation,we established a mouse model of cerebral ischemia/reperfusion.We found significant myelin damage after cerebral ischemia,as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area.The ferroptosis inhibitor,ferrostatin-1,rescued oligodendrocyte progenitor cell death and subsequent myelin injury.We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells.Plin2 knockdown rescued demyelination and improved neurological deficits.Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.展开更多
Conogethes punctiferalis is a crop and fruit pest that has caused serious economic losses to agricultural production.This pest relies heavily on its sex pheromone to ensure sexual encounters and subsequent mating succ...Conogethes punctiferalis is a crop and fruit pest that has caused serious economic losses to agricultural production.This pest relies heavily on its sex pheromone to ensure sexual encounters and subsequent mating success.However,the molecular mechanism underlying sex pheromone biosynthesis in this species remains elusive.The present study investigated the detailed mechanism underlying PBAN-regulated sex pheromone biosynthesis in C.punctiferalis by transcriptome sequencing of the C.punctiferalis pheromone glands(PGs)and subsequent functional identification of the target genes.The results showed that female mating started from the first scotophase,and peaked at the second to fifth scotophases in accordance with the release of sex pheromones.PBAN regulated sex pheromone biosynthesis by employing Ca^(2+)and cAMP as secondary messengers,as demonstrated by RNA interference(RNAi),pharmacological inhibitors,and behavioral assays.Further investigation revealed that calcineurin(CaN)and acetyl-CoA carboxylase(ACC)were activated by PBAN/Ca^(2+)signaling,and the RNAimediated knockdown of CaN and ACC transcripts significantly reduced sex pheromone production,ultimately leading to a significantly reduced ability of females to attract males.Importantly,hexokinase(HK)was found to regulate sex pheromone biosynthesis in response to the PBAN/cAMP/PKA signaling pathway,as demonstrated by RNAi,enzyme activity,and pharmacological inhibitor assays.Furthermore,Far2 and Desaturase1 were found to participate in PBAN-regulated sex pheromone biosynthesis.Altogether,our findings revealed that PBAN regulates sex pheromone biosynthesis through the PBANR/Ca^(2+)/CaN/ACC and PBANR/cAMP/PKA/HK pathways in C.punctiferalis,which enriches our comprehension of the details of sex pheromone biosynthesis in moths.展开更多
Nickel is a strategic resource in social life and defense technology,playing an essential role in many fields,such as alloys and batteries.With the decrease in nickel sulfide,it is of great significance to extract nic...Nickel is a strategic resource in social life and defense technology,playing an essential role in many fields,such as alloys and batteries.With the decrease in nickel sulfide,it is of great significance to extract nickel from laterite.The limonitic laterite is a kind of rich nickel-cobalt-scandium resource.At present,there are few reviews on the extraction of limonitic laterite.This study reviews the hydrometallurgical processes for limonitic laterite ores and the methods of recovering valuable elements.The mineralogical characteristics are analyzed,and the typical mineral compositions are summarized.The main hydrometallurgical processes are compared and discussed,including reduction roasting-ammonia leaching,sulfuric acid pressure leaching,nitric acid pressure leaching,and the atmospheric nitric acid leaching(DNi process).The methods of recovering nickel,cobalt,scandium,and iron are emphatically outlined.Finally,reasonable suggestions are proposed for comprehensive utilization.This study can provide a reference for industrial development and diversified applications.展开更多
Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present stud...Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present study,we employed Bulked-Segregant Analysis sequencing(BSA-seq)to identify a candidate region(~1.35 Mb)on chromosome 6 that corresponds to seed size.This interval was confirmed by QTL mapping of three seed size-related traits from an F2 population across three environments.This mapping region represented nine QTLs that shared an overlapping region on chromosome 6,collectively referred to as qSS6.1.New InDel markers were developed in the qSS6.1 region,narrowing it down to a 68.35 kb interval that contains eight annotated genes.Sequence variation analysis of the eight genes identified a SNP with a C to T transition mutation in the promoter region of MELO3C014002,a leucine-rich repeat receptor-like kinase(LRR-RLK)gene.This mutation affected the promoter activity of the MELO3C014002 gene and was successfully used to differentiate the large-seeded accessions(C-allele)from the small-seeded accessions(T-allele).qRT-PCR revealed differential expression of MELO3C014002 between the two parental lines.Its predicted protein has typical LRR-RLK family domains,and phylogenetic analyses reveled its similarity with the homologs in several plant species.Altogether,these findings suggest MELO3C014002 as the most likely candidate gene involved in melon seed size regulation.Our results will be helpful for better understanding the genetic mechanism regulating seed size in melons and for genetically improving this important trait through molecular breeding pathways.展开更多
Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently le...Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide.In precision medicine,research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity,as well as the refractory nature of GBM toward therapy.Deep understanding of the different molecular expression patterns of GBM subtypes is critical.Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes.The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors.These subtypes also exhibit high plasticity in their regulatory pathways,oncogene expression,tumor microenvironment alterations,and differential responses to standard therapy.Herein,we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype.Furthermore,we review the mesenchymal transition mechanisms of GBM under various regulators.展开更多
Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In...Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In many industrial scenarios,contactless sensors are more preferred.The event camera is an emerging bio-inspired technology for vision sensing,which asynchronously records per-pixel brightness change polarity with high temporal resolution and low latency.It offers a promising tool for contactless machine vibration sensing and fault diagnosis.However,the dynamic vision-based methods suffer from variations of practical factors such as camera position,machine operating condition,etc.Furthermore,as a new sensing technology,the labeled dynamic vision data are limited,which generally cannot cover a wide range of machine fault modes.Aiming at these challenges,a novel dynamic vision-based machinery fault diagnosis method is proposed in this paper.It is motivated to explore the abundant vibration acceleration data for enhancing the dynamic vision-based model performance.A crossmodality feature alignment method is thus proposed with deep adversarial neural networks to achieve fault diagnosis knowledge transfer.An event erasing method is further proposed for improving model robustness against variations.The proposed method can effectively identify unseen fault mode with dynamic vision data.Experiments on two rotating machine monitoring datasets are carried out for validations,and the results suggest the proposed method is promising for generalized contactless machinery fault diagnosis.展开更多
Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focus...Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focused on the production and pharmacological side effects caused by H_(2)S.Therefore,effective strategies to remove H_(2)S has become a key research topic.Furthermore,the development of novel nanoplatforms has provided new tools for the targeted removal of H_(2)S.This paper was performed to review the association between H_(2)S anddisease,relatedH_(2)S inhibitory drugs,aswell as H_(2)S responsive nanoplatforms(HRNs).This review first analyzed the role of H_(2)S in multiple tissues and conditions.Second,common drugs used to eliminate H_(2)S,as well as their potential for combination with anticancer agents,were summarized.Not only the existing studies on HRNs,but also the inhibition H_(2)S combined with different therapeutic methods were both sorted out in this review.Furthermore,this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail.Finally,potential challenges of HRNs were proposed.This study demonstrates the excellent potential of HRNs for biomedical applications.展开更多
Lithium-ion batteries(LIBs)play a pivotal role in today's society,with widespread applications in portable electronics,electric vehicles,and smart grids.Commercial LIBs predominantly utilize graphite anodes due to...Lithium-ion batteries(LIBs)play a pivotal role in today's society,with widespread applications in portable electronics,electric vehicles,and smart grids.Commercial LIBs predominantly utilize graphite anodes due to their high energy density and cost-effectiveness.Graphite anodes face challenges,however,in extreme safety-demanding situations,such as airplanes and passenger ships.The lithiation of graphite can potentially form lithium dendrites at low temperatures,causing short circuits.Additionally,the dissolution of the solid-electrolyte-interphase on graphite surfaces at high temperatures can lead to intense reactions with the electrolyte,initiating thermal runaway.This review introduces two promising high-safety anode materials,Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7).Both materials exhibit low tendencies towards lithium dendrite formation and have high onset temperatures for reactions with the electrolyte,resulting in reduced heat generation and significantly lower probabilities of thermal runaway.Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7)offer enhanced safety characteristics compared to graphite,making them suitable for applications with stringent safety requirements.This review provides a comprehensive overview of Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7),focusing on their material properties and practical applicability.It aims to contribute to the understanding and development of high-safety anode materials for advanced LIBs,addressing the challenges and opportunities associated with their implementation in real-world applications.展开更多
The China Spallation Neutron Source(CSNS) upgrade project(CSNS-Ⅱ) aims to enhance the beam power from 100 to 500 kW. A dual-harmonic accelerating method has been adopted to alleviate the stronger space-charge effect ...The China Spallation Neutron Source(CSNS) upgrade project(CSNS-Ⅱ) aims to enhance the beam power from 100 to 500 kW. A dual-harmonic accelerating method has been adopted to alleviate the stronger space-charge effect in rapid-cycling synchrotrons owing to the increased beam intensity. To satisfy the requirements of dual-harmonic acceleration, a new radiofrequency(RF) system based on a magnetic alloy-loaded cavity is proposed. This paper presents design considerations and experimental results regarding the performance evaluation of the proposed RF system through high-power tests and beam commissioning. The test results demonstrate that the RF system satisfies the desired specifications and affords significant benefits for CSNS-Ⅱ.展开更多
Unraveling the distribution of metabolites in traditional Chinese medicine(TCM)provides direct indications for understanding their regulatory and functional basis,which is of paramount significance for better utilizat...Unraveling the distribution of metabolites in traditional Chinese medicine(TCM)provides direct indications for understanding their regulatory and functional basis,which is of paramount significance for better utilization and quality control of medicinal plants[1].Recently,imaging techniques such as near-infrared spectroscopy,Raman spectroscopy,and mass spectrometry(MS)were explored to reveal the spatial context of component accumulation and localization[2,3].展开更多
In comparison to bright pulses, better stability that is not susceptible to loss makes dark pulses accessible for applications in such fields as signal processing, optics sensing, and quantum communication. Here we in...In comparison to bright pulses, better stability that is not susceptible to loss makes dark pulses accessible for applications in such fields as signal processing, optics sensing, and quantum communication. Here we investigate the dual-wavelength domain-wall dark pulse generation in a graded-index multimode fiber(GIMF) based anomalous dispersion single-mode fiber(SMF) laser. By optimizing intra-cavity nonlinearity and pulse polarization, the mode-locked states can evolve each other between bright pulses, dark pulses, and bright-dark pulse pairs. The evolution mechanism among them may be relevant to the coherent mode superposition, spectral filtering, and mode selection in SMF-GIMF-SMF hybrid-fiber modulation devices that affect the pulse formation and evolution in temporal, frequency, and space domains. These results provide a valuable reference for promoting further development of nonlinear optics and ultrafast optics, in which ultrafast photonic devices, with low cost, simple manufacture as well as wide adaptability, as novel pulsed generation technique, play a vital role.展开更多
BACKGROUND:Xuebijing(XBJ)can alleviate the inflammatory response,improve organ function,and shorten the intensive care unit(ICU)stay in patients with pyogenic liver abscess(PLA)complicated with sepsis,but the molecula...BACKGROUND:Xuebijing(XBJ)can alleviate the inflammatory response,improve organ function,and shorten the intensive care unit(ICU)stay in patients with pyogenic liver abscess(PLA)complicated with sepsis,but the molecular mechanisms have not been elucidated.This study aimed to explore the molecular mechanism of XBJ in treating PLA complicated with sepsis using a network pharmacology approach.METHODS:The active ingredients and targets of XBJ were retrieved from the ETCM database.Potential targets related to PLA and sepsis were retrieved from the GeneCards,PharmGKB,DisGeNet,Online Mendelian Inheritance in Man(OMIM),Therapeutic Targets Database(TTD),and DrugBank databases.The targets of PLA complicated with sepsis were mapped to the targets of XBJ to identify potential treatment targets.Protein-protein interaction networks were analyzed using the STRING database.Potential treatment targets were imported into the Metascape platform for Gene Ontology(GO)functional enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses.Molecular docking was performed to validate the interactions between active ingredients and core targets.RESULTS:XBJ was found to have 54 potential treatment targets for PLA complicated with sepsis.Interleukin-1β(IL-1β),interleukin-6(IL-6),and tumor necrosis factor(TNF)were identifi ed as core targets.KEGG enrichment analysis revealed important pathways,including the interleukin-17(IL-17)signaling pathway,the TNF signaling pathway,the nuclear factor-kappa B(NF-κB)signaling pathway,and the Toll-like receptor(TLR)signaling pathway.Molecular docking experiments indicated stable binding between XBJ active ingredients and core targets.CONCLUSION:XBJ may exert therapeutic eff ects on PLA complicated with sepsis by modulating signaling pathways,such as the IL-17,TNF,NF-κB,and TLR pathways,and targeting IL-1β,IL-6,and TNF.展开更多
Background Individuals with diabetes have a significantly higher risk of developing chronic kidney disease(CKD)and higher levels of social isolation and loneliness compared with those without diabetes.Recently,the Ame...Background Individuals with diabetes have a significantly higher risk of developing chronic kidney disease(CKD)and higher levels of social isolation and loneliness compared with those without diabetes.Recently,the American Heart Association highlighted the importance of considering social determinants of health(SDOH)in conjunction with traditional risk factors in patients with diabetes.Aims To investigate the associations of loneliness and social isolation with incident CKD risk in patients with diabetes in the UK Biobank.Methods A total of 18972 patients with diabetes were included in this prospective study.Loneliness and Social Isolation Scales were created based on self-reported factors.An adjusted Cox proportional hazard model was used to investigate the associations of loneliness and social isolation with CKD risk among patients with diabetes.The relative importance in predicting CKD was also calculated alongside traditional risk factors.Results During a median follow-up of 10.8 years,1127 incident CKD cases were reported.A higher loneliness scale,but not social isolation,was significantly associated with a 25%higher risk of CKD,independent of traditional risk factors,among patients with diabetes.Among the individual loneliness factors,the sense of feeling lonely emerged as the primary contributing factor to the elevated risk of CKD.Compared with individuals not experiencing feelings of loneliness,those who felt lonely exhibited a 22%increased likelihood of developing CKD.In addition,feeling lonely demonstrated greater relative importance of predicting CKD compared with traditional risk factors such as body mass index,smoking,physical activity and diet.Conclusions This study indicates the significant relationship between loneliness and CKD risk among patients with diabetes,highlighting the need to address SDOH in preventing CKD in this population.展开更多
During the development phase horizontal wells are very efficient way to improve the production in the deep coal bed methane. The 8# coal seam in the XX block on the eastern edge of the Ordos Basin has challenges such ...During the development phase horizontal wells are very efficient way to improve the production in the deep coal bed methane. The 8# coal seam in the XX block on the eastern edge of the Ordos Basin has challenges such as deep burial depth (>2000 m), thin coal sweet spot (3 m), and significant short-distance structural fluctuations. The challenges caused a high risk of missing targets and running out of the target layers, as well as difficulties in cementing and completion due to uneven well trajectories. To address these challenges, this paper focuses on solving the issues through detailed precise geological modeling, optimized trajectory design, and accurate seismic geology Steerable Drilling. 1) Based on reasonable velocity field construction and Time-Depth transformation, a precise directional model is constructed using the layer-by-layer approximation principle with reference to marker layers, improving the accuracy of the target spot and avoiding premature or delayed entry into the target;2) Based on a precise geological model, the dip angle of the strata ahead and the development of sweet spots are clearly defined, enabling optimized trajectory design for horizontal wells;3) Using “1 + N” dynamic modeling to update the geological model in real-time during the drilling process, and actively guide the drill bit through the horizontal segment smoothly by using multi-information judgment of the drill bit position. The actual drilling of 80 completed horizontal wells in this area show: That this approach effectively ensures the smooth trajectory and high-quality drilling rate of the horizontal well in the coal seam, providing a basis for subsequent hydraulic fracturing and increasing single-well production. At the same time, it has certain potential value and significance for similar coalbed methane developments under similar geological conditions.展开更多
In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However...In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However,existing datafusion prognostic approaches generally rely on the data availability of all sensors,and are vulnerable to potential sensor malfunctions,which are likely to occur in real industries especially for machines in harsh operating environments.In this paper,a deep learning-based remaining useful life(RUL)prediction method is proposed to address the sensor malfunction problem.A global feature extraction scheme is adopted to fully exploit information of different sensors.Adversarial learning is further introduced to extract generalized sensor-invariant features.Through explorations of both global and shared features,promising and robust RUL prediction performance can be achieved by the proposed method in the testing scenarios with sensor malfunctions.The experimental results suggest the proposed approach is well suited for real industrial applications.展开更多
Previous studies have confirmed the relationship between iron-dependent ferroptosis and a peripheral nerve injury-induced neuropathic pain model.However,the role of fe rroptosis in inflammatory pain remains inconclusi...Previous studies have confirmed the relationship between iron-dependent ferroptosis and a peripheral nerve injury-induced neuropathic pain model.However,the role of fe rroptosis in inflammatory pain remains inconclusive.Therefore,we aimed to explore whether ferroptosis in the spinal cord and do rsal root ganglion contributes to complete Freund's adjuvant(CFA)-induced painful behaviors in rats.Our results revealed that various biochemical and morphological changes were associated with ferroptosis in the spinal cord and dorsal root ganglion tissues of CFA rats.These changes included iron overload,enhanced lipid peroxidation,disorders of anti-acyl-coenzyme A synthetase long-chain family member 4 and glutathione peroxidase 4 levels,and abnormal morphological changes in mitochondria.Intrathecal treatment of liproxstatin-1(a ferroptosis inhibitor)reve rsed these ferroptosis-related changes and alleviated mechanical and thermal hype rsensitivities in CFA rats.Our study demonstrated the occurrence of fe rroptosis in the spinal cord and do rsal root ganglion tissues in a rodent model of inflammatory pain and indicated that intrathecal administration of fe rroptosis inhibitors,such as liproxstatin-1,is a potential therapeutic strategy for treating inflammatory pain.展开更多
Copper-indium-gallium-diselenide(CIGS)is a fast-evolving commercial solar cell.The firm demand for global carbon reduction and the rise of potential environmental threats necessitate spent CIGS solar cell recycling.In...Copper-indium-gallium-diselenide(CIGS)is a fast-evolving commercial solar cell.The firm demand for global carbon reduction and the rise of potential environmental threats necessitate spent CIGS solar cell recycling.In this paper,the sources and characteristics of valuable metals in spent CIGS solar cells were reviewed.The potential environmental impacts of CIGS,including service life,critical material,and material toxicity,were outlined.The main recovery methods of valuable metals in the various types of spent CIGS,including hydrometallurgy,pyrometallurgy,and comprehensive treatment processes,were compared and discussed.The mechanism of different recovery processes was summarized.The challenges faced by different recycling processes of spent CIGS were also covered in this review.Finally,the economic viability of the recycling process was assessed.The purpose of this review is to provide reasonable suggestions for the sustainable development of CIGS and the harmless disposal of spent CIGS.展开更多
文摘In 2023,Baishideng Publishing Group(Baishideng)routinely published 47 openaccess journals,including 46 English-language journals and 1 Chinese-language journal.Our successes were accomplished through the collective dedicated efforts of Baishideng staffs,Editorial Board Members,and Peer Reviewers.Among these 47 Baishideng journals,7 are included in the Science Citation Index Expanded(SCIE)and 6 in the Emerging Sources Citation Index(ESCI).With the support of Baishideng authors,company staffs,Editorial Board Members,and Peer Reviewers,the publication work of 2023 is about to be successfully completed.This editorial summarizes the 2023 activities and accomplishments of the 13 SCIEand ESCI-indexed Baishideng journals,outlines the Baishideng publishing policy changes and additions made this year,and highlights the unique advantages of Baishideng journals.
基金supported by the National Natural Science Foundation of China(31970501)the Fundamental Research Funds for the Central Universities,China(2572022CG01)the National Forestry and Grassland Administration,China。
文摘Highly pathogenic avian influenza(HPAI)subtype H5Nx viruses have spread globally and are a major concern for poultry,wild birds,mammals,and even humans(de Vries et al.2015;Zeng et al.2022).The hemagglutinin(HA)genes of H5 subtype viruses have evolved into multiple clades and some of these clades have been further divided into subclades(Cui et al.2022).Clade 2.3.4.4H5N8 HPAI viruses(HPAIVs)have caused several waves of disease outbreaks in wild birds and domestic poultry(Wang et al.2022).
基金supported by the National Natural Science Foundation of China, Nos.81971151 (to YW), 82102528 (to XL), 82102583 (to LW)the Natural Science Foundation of Guangdong Province, China, Nos.2020A1515010265 (to YW), 2020A1515110679 (to XL), and 2021A1515010358 (to XL)
文摘Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury.Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction.However,the mechanisms involved remain unclear.In this study,we found that after spinal cord injury,resting microglia(M0)were polarized into pro-inflammatory phenotypes(MG1 and MG3),while resting astrocytes were polarized into reactive and scar-forming phenotypes.The expression of growth arrest-specific 6(Gas6)and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury.In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia,and even inhibited the cross-regulation between them.We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway.This,in turn,inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways.In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord,thereby promoting tissue repair and motor function recovery.Overall,Gas6 may play a role in the treatment of spinal cord injury.It can inhibit the inflammatory pathway of microglia and polarization of astrocytes,attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment,and thereby alleviate local inflammation and reduce scar formation in the spinal cord.
基金supported by the National Natural Science Foundation of China,Nos.82071307(to HL),82271362(to HL),82171294(to JW),82371303(to JW),and 82301460(to PX)the Natural Science Foundation of Jiangsu Province,No.BK20211552(to HL)+1 种基金Suzhou Medical Technology Innovation Project-Clinical Frontier,No.SKY2022002(to ZY)the Science and Education Foundation for Health of Suzhou for Youth,No.KJXW2023001(to XL)。
文摘Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage.Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation,and plays an important role in the pathological process of ischemic stroke.However,there are few studies on oligodendrocyte progenitor cell ferroptosis.We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia.Bioinformatics analysis suggested that perilipin-2(PLIN2)was involved in oligodendrocyte progenitor cell ferroptosis.PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation.For further investigation,we established a mouse model of cerebral ischemia/reperfusion.We found significant myelin damage after cerebral ischemia,as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area.The ferroptosis inhibitor,ferrostatin-1,rescued oligodendrocyte progenitor cell death and subsequent myelin injury.We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells.Plin2 knockdown rescued demyelination and improved neurological deficits.Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.
基金supported by the National Natural Science Foundation of China(31970472,32272547)the National Science Fund of Henan Province for Distinguished Young Scholars,China(202300410191)+3 种基金the Basic Research Project of the Key Scientific Research Projects of Universities in Henan Province,China(21zx013)the Henan Agricultural Research System,China(HARS-2209-G3)the Henan Special Support for High-Level Talents Central Plains Science and Technology Innovation Leading Talents,China(224200510018)the earmarked fund for China Agricultural Research System(CARS-27)。
文摘Conogethes punctiferalis is a crop and fruit pest that has caused serious economic losses to agricultural production.This pest relies heavily on its sex pheromone to ensure sexual encounters and subsequent mating success.However,the molecular mechanism underlying sex pheromone biosynthesis in this species remains elusive.The present study investigated the detailed mechanism underlying PBAN-regulated sex pheromone biosynthesis in C.punctiferalis by transcriptome sequencing of the C.punctiferalis pheromone glands(PGs)and subsequent functional identification of the target genes.The results showed that female mating started from the first scotophase,and peaked at the second to fifth scotophases in accordance with the release of sex pheromones.PBAN regulated sex pheromone biosynthesis by employing Ca^(2+)and cAMP as secondary messengers,as demonstrated by RNA interference(RNAi),pharmacological inhibitors,and behavioral assays.Further investigation revealed that calcineurin(CaN)and acetyl-CoA carboxylase(ACC)were activated by PBAN/Ca^(2+)signaling,and the RNAimediated knockdown of CaN and ACC transcripts significantly reduced sex pheromone production,ultimately leading to a significantly reduced ability of females to attract males.Importantly,hexokinase(HK)was found to regulate sex pheromone biosynthesis in response to the PBAN/cAMP/PKA signaling pathway,as demonstrated by RNAi,enzyme activity,and pharmacological inhibitor assays.Furthermore,Far2 and Desaturase1 were found to participate in PBAN-regulated sex pheromone biosynthesis.Altogether,our findings revealed that PBAN regulates sex pheromone biosynthesis through the PBANR/Ca^(2+)/CaN/ACC and PBANR/cAMP/PKA/HK pathways in C.punctiferalis,which enriches our comprehension of the details of sex pheromone biosynthesis in moths.
基金supported by the National Natural Science Foundation of China(U2202254,51974025,52034002)the Fundamental Research Funds for the Central Universities(FRF-TT-19-001).
文摘Nickel is a strategic resource in social life and defense technology,playing an essential role in many fields,such as alloys and batteries.With the decrease in nickel sulfide,it is of great significance to extract nickel from laterite.The limonitic laterite is a kind of rich nickel-cobalt-scandium resource.At present,there are few reviews on the extraction of limonitic laterite.This study reviews the hydrometallurgical processes for limonitic laterite ores and the methods of recovering valuable elements.The mineralogical characteristics are analyzed,and the typical mineral compositions are summarized.The main hydrometallurgical processes are compared and discussed,including reduction roasting-ammonia leaching,sulfuric acid pressure leaching,nitric acid pressure leaching,and the atmospheric nitric acid leaching(DNi process).The methods of recovering nickel,cobalt,scandium,and iron are emphatically outlined.Finally,reasonable suggestions are proposed for comprehensive utilization.This study can provide a reference for industrial development and diversified applications.
基金the Henan Special Funds for Major Science and Technology,China(221100110400)the Henan Scienti?c and Technological Joint Project for Agricultural Improved Varieties,China(2022010503)the National Natural Science Foundation of China(31902038 and 32072564)。
文摘Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present study,we employed Bulked-Segregant Analysis sequencing(BSA-seq)to identify a candidate region(~1.35 Mb)on chromosome 6 that corresponds to seed size.This interval was confirmed by QTL mapping of three seed size-related traits from an F2 population across three environments.This mapping region represented nine QTLs that shared an overlapping region on chromosome 6,collectively referred to as qSS6.1.New InDel markers were developed in the qSS6.1 region,narrowing it down to a 68.35 kb interval that contains eight annotated genes.Sequence variation analysis of the eight genes identified a SNP with a C to T transition mutation in the promoter region of MELO3C014002,a leucine-rich repeat receptor-like kinase(LRR-RLK)gene.This mutation affected the promoter activity of the MELO3C014002 gene and was successfully used to differentiate the large-seeded accessions(C-allele)from the small-seeded accessions(T-allele).qRT-PCR revealed differential expression of MELO3C014002 between the two parental lines.Its predicted protein has typical LRR-RLK family domains,and phylogenetic analyses reveled its similarity with the homologs in several plant species.Altogether,these findings suggest MELO3C014002 as the most likely candidate gene involved in melon seed size regulation.Our results will be helpful for better understanding the genetic mechanism regulating seed size in melons and for genetically improving this important trait through molecular breeding pathways.
基金supported by grants from the National Natural Science Foundation of China(Grant No.82172660)Hebei Province Graduate Student Innovation Project(Grant No.CXZZBS2023001)Baoding Natural Science Foundation(Grant No.H2272P015).
文摘Among central nervous system-associated malignancies,glioblastoma(GBM)is the most common and has the highest mortality rate.The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide.In precision medicine,research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity,as well as the refractory nature of GBM toward therapy.Deep understanding of the different molecular expression patterns of GBM subtypes is critical.Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes.The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors.These subtypes also exhibit high plasticity in their regulatory pathways,oncogene expression,tumor microenvironment alterations,and differential responses to standard therapy.Herein,we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype.Furthermore,we review the mesenchymal transition mechanisms of GBM under various regulators.
基金supported by the National Science Fund for Distinguished Young Scholars of China(52025056)the China Postdoctoral Science Foundation(2023M732789)+1 种基金the China Postdoctoral Innovative Talents Support Program(BX20230290)the Fundamental Research Funds for the Central Universities(xzy012022062).
文摘Intelligent machinery fault diagnosis methods have been popularly and successfully developed in the past decades,and the vibration acceleration data collected by contact accelerometers have been widely investigated.In many industrial scenarios,contactless sensors are more preferred.The event camera is an emerging bio-inspired technology for vision sensing,which asynchronously records per-pixel brightness change polarity with high temporal resolution and low latency.It offers a promising tool for contactless machine vibration sensing and fault diagnosis.However,the dynamic vision-based methods suffer from variations of practical factors such as camera position,machine operating condition,etc.Furthermore,as a new sensing technology,the labeled dynamic vision data are limited,which generally cannot cover a wide range of machine fault modes.Aiming at these challenges,a novel dynamic vision-based machinery fault diagnosis method is proposed in this paper.It is motivated to explore the abundant vibration acceleration data for enhancing the dynamic vision-based model performance.A crossmodality feature alignment method is thus proposed with deep adversarial neural networks to achieve fault diagnosis knowledge transfer.An event erasing method is further proposed for improving model robustness against variations.The proposed method can effectively identify unseen fault mode with dynamic vision data.Experiments on two rotating machine monitoring datasets are carried out for validations,and the results suggest the proposed method is promising for generalized contactless machinery fault diagnosis.
基金supported by National Key Research and Development Program of China(contract No.2019YFA0904800)National Nature Science Foundation of China(32030065,31722033,92049304 to Y.Z.)+5 种基金Shanghai Sailing Program(contract No.21YF1410300)Science and Technology Commission of Shanghai Municipality(contract No.10DZ2220500)The Shanghai Committee of Science and Technology(grant No.11DZ2260600)Shanghai Frontiers Science Center of Optogenetic Techniques for CellMetabolism(Y.Z.)Research Unit of New Techniques for Live-cell Metabolic Imaging(Chinese Academy of Medical Sciences,2019-I2M-5-013 to Y.Z.)the State Key Laboratory of Bioreactor Engineering,the Fundamental Research Funds for the Central Universities.
文摘Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focused on the production and pharmacological side effects caused by H_(2)S.Therefore,effective strategies to remove H_(2)S has become a key research topic.Furthermore,the development of novel nanoplatforms has provided new tools for the targeted removal of H_(2)S.This paper was performed to review the association between H_(2)S anddisease,relatedH_(2)S inhibitory drugs,aswell as H_(2)S responsive nanoplatforms(HRNs).This review first analyzed the role of H_(2)S in multiple tissues and conditions.Second,common drugs used to eliminate H_(2)S,as well as their potential for combination with anticancer agents,were summarized.Not only the existing studies on HRNs,but also the inhibition H_(2)S combined with different therapeutic methods were both sorted out in this review.Furthermore,this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail.Finally,potential challenges of HRNs were proposed.This study demonstrates the excellent potential of HRNs for biomedical applications.
基金financially supported by an Australian Research Council(ARC)Discovery Project(DP180101453)an Australian Renewable Energy Agency(ARENA)Project(G00849)+1 种基金the 2021 Ludo Frevel Crystal ography Scholarship Awardan AINSE Ltd.Postgraduate Research Award(PGRA)
文摘Lithium-ion batteries(LIBs)play a pivotal role in today's society,with widespread applications in portable electronics,electric vehicles,and smart grids.Commercial LIBs predominantly utilize graphite anodes due to their high energy density and cost-effectiveness.Graphite anodes face challenges,however,in extreme safety-demanding situations,such as airplanes and passenger ships.The lithiation of graphite can potentially form lithium dendrites at low temperatures,causing short circuits.Additionally,the dissolution of the solid-electrolyte-interphase on graphite surfaces at high temperatures can lead to intense reactions with the electrolyte,initiating thermal runaway.This review introduces two promising high-safety anode materials,Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7).Both materials exhibit low tendencies towards lithium dendrite formation and have high onset temperatures for reactions with the electrolyte,resulting in reduced heat generation and significantly lower probabilities of thermal runaway.Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7)offer enhanced safety characteristics compared to graphite,making them suitable for applications with stringent safety requirements.This review provides a comprehensive overview of Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7),focusing on their material properties and practical applicability.It aims to contribute to the understanding and development of high-safety anode materials for advanced LIBs,addressing the challenges and opportunities associated with their implementation in real-world applications.
基金This work was supported by funds from the National Natural Science Foundation of China(Nos.11875270,U1832210,12205317)Youth Innovation Promotion Association CAS(No.2018015)Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120046).
文摘The China Spallation Neutron Source(CSNS) upgrade project(CSNS-Ⅱ) aims to enhance the beam power from 100 to 500 kW. A dual-harmonic accelerating method has been adopted to alleviate the stronger space-charge effect in rapid-cycling synchrotrons owing to the increased beam intensity. To satisfy the requirements of dual-harmonic acceleration, a new radiofrequency(RF) system based on a magnetic alloy-loaded cavity is proposed. This paper presents design considerations and experimental results regarding the performance evaluation of the proposed RF system through high-power tests and beam commissioning. The test results demonstrate that the RF system satisfies the desired specifications and affords significant benefits for CSNS-Ⅱ.
基金supported by the National Natural Science Foundation of China(Grant No.:81773874).
文摘Unraveling the distribution of metabolites in traditional Chinese medicine(TCM)provides direct indications for understanding their regulatory and functional basis,which is of paramount significance for better utilization and quality control of medicinal plants[1].Recently,imaging techniques such as near-infrared spectroscopy,Raman spectroscopy,and mass spectrometry(MS)were explored to reveal the spatial context of component accumulation and localization[2,3].
基金supported by the National Natural Science Foundation of China (Grant No.12164030)the Young Science and Technology Talents of Inner Mongolia (Grant No.NJYT22101)the Central Government Guides Local Science and Technology Development Fund Projects (Grant No.2023ZY0005)。
文摘In comparison to bright pulses, better stability that is not susceptible to loss makes dark pulses accessible for applications in such fields as signal processing, optics sensing, and quantum communication. Here we investigate the dual-wavelength domain-wall dark pulse generation in a graded-index multimode fiber(GIMF) based anomalous dispersion single-mode fiber(SMF) laser. By optimizing intra-cavity nonlinearity and pulse polarization, the mode-locked states can evolve each other between bright pulses, dark pulses, and bright-dark pulse pairs. The evolution mechanism among them may be relevant to the coherent mode superposition, spectral filtering, and mode selection in SMF-GIMF-SMF hybrid-fiber modulation devices that affect the pulse formation and evolution in temporal, frequency, and space domains. These results provide a valuable reference for promoting further development of nonlinear optics and ultrafast optics, in which ultrafast photonic devices, with low cost, simple manufacture as well as wide adaptability, as novel pulsed generation technique, play a vital role.
基金supported by Hunan Province Key Research and Development Program(2020SKC2004).
文摘BACKGROUND:Xuebijing(XBJ)can alleviate the inflammatory response,improve organ function,and shorten the intensive care unit(ICU)stay in patients with pyogenic liver abscess(PLA)complicated with sepsis,but the molecular mechanisms have not been elucidated.This study aimed to explore the molecular mechanism of XBJ in treating PLA complicated with sepsis using a network pharmacology approach.METHODS:The active ingredients and targets of XBJ were retrieved from the ETCM database.Potential targets related to PLA and sepsis were retrieved from the GeneCards,PharmGKB,DisGeNet,Online Mendelian Inheritance in Man(OMIM),Therapeutic Targets Database(TTD),and DrugBank databases.The targets of PLA complicated with sepsis were mapped to the targets of XBJ to identify potential treatment targets.Protein-protein interaction networks were analyzed using the STRING database.Potential treatment targets were imported into the Metascape platform for Gene Ontology(GO)functional enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analyses.Molecular docking was performed to validate the interactions between active ingredients and core targets.RESULTS:XBJ was found to have 54 potential treatment targets for PLA complicated with sepsis.Interleukin-1β(IL-1β),interleukin-6(IL-6),and tumor necrosis factor(TNF)were identifi ed as core targets.KEGG enrichment analysis revealed important pathways,including the interleukin-17(IL-17)signaling pathway,the TNF signaling pathway,the nuclear factor-kappa B(NF-κB)signaling pathway,and the Toll-like receptor(TLR)signaling pathway.Molecular docking experiments indicated stable binding between XBJ active ingredients and core targets.CONCLUSION:XBJ may exert therapeutic eff ects on PLA complicated with sepsis by modulating signaling pathways,such as the IL-17,TNF,NF-κB,and TLR pathways,and targeting IL-1β,IL-6,and TNF.
基金supported by grants from the National Heart,Lung,and Blood Institute(HL071981,HL034594,HL126024)the National Institute of Diabetes and Digestive and Kidney Diseases(DK115679,DK091718,DK100383,DK078616).
文摘Background Individuals with diabetes have a significantly higher risk of developing chronic kidney disease(CKD)and higher levels of social isolation and loneliness compared with those without diabetes.Recently,the American Heart Association highlighted the importance of considering social determinants of health(SDOH)in conjunction with traditional risk factors in patients with diabetes.Aims To investigate the associations of loneliness and social isolation with incident CKD risk in patients with diabetes in the UK Biobank.Methods A total of 18972 patients with diabetes were included in this prospective study.Loneliness and Social Isolation Scales were created based on self-reported factors.An adjusted Cox proportional hazard model was used to investigate the associations of loneliness and social isolation with CKD risk among patients with diabetes.The relative importance in predicting CKD was also calculated alongside traditional risk factors.Results During a median follow-up of 10.8 years,1127 incident CKD cases were reported.A higher loneliness scale,but not social isolation,was significantly associated with a 25%higher risk of CKD,independent of traditional risk factors,among patients with diabetes.Among the individual loneliness factors,the sense of feeling lonely emerged as the primary contributing factor to the elevated risk of CKD.Compared with individuals not experiencing feelings of loneliness,those who felt lonely exhibited a 22%increased likelihood of developing CKD.In addition,feeling lonely demonstrated greater relative importance of predicting CKD compared with traditional risk factors such as body mass index,smoking,physical activity and diet.Conclusions This study indicates the significant relationship between loneliness and CKD risk among patients with diabetes,highlighting the need to address SDOH in preventing CKD in this population.
文摘During the development phase horizontal wells are very efficient way to improve the production in the deep coal bed methane. The 8# coal seam in the XX block on the eastern edge of the Ordos Basin has challenges such as deep burial depth (>2000 m), thin coal sweet spot (3 m), and significant short-distance structural fluctuations. The challenges caused a high risk of missing targets and running out of the target layers, as well as difficulties in cementing and completion due to uneven well trajectories. To address these challenges, this paper focuses on solving the issues through detailed precise geological modeling, optimized trajectory design, and accurate seismic geology Steerable Drilling. 1) Based on reasonable velocity field construction and Time-Depth transformation, a precise directional model is constructed using the layer-by-layer approximation principle with reference to marker layers, improving the accuracy of the target spot and avoiding premature or delayed entry into the target;2) Based on a precise geological model, the dip angle of the strata ahead and the development of sweet spots are clearly defined, enabling optimized trajectory design for horizontal wells;3) Using “1 + N” dynamic modeling to update the geological model in real-time during the drilling process, and actively guide the drill bit through the horizontal segment smoothly by using multi-information judgment of the drill bit position. The actual drilling of 80 completed horizontal wells in this area show: That this approach effectively ensures the smooth trajectory and high-quality drilling rate of the horizontal well in the coal seam, providing a basis for subsequent hydraulic fracturing and increasing single-well production. At the same time, it has certain potential value and significance for similar coalbed methane developments under similar geological conditions.
基金supported by the National Science Fund for Distinguished Young Scholars of China(52025056)Fundamental Research Funds for the Central Universities(xzy012022062)。
文摘In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However,existing datafusion prognostic approaches generally rely on the data availability of all sensors,and are vulnerable to potential sensor malfunctions,which are likely to occur in real industries especially for machines in harsh operating environments.In this paper,a deep learning-based remaining useful life(RUL)prediction method is proposed to address the sensor malfunction problem.A global feature extraction scheme is adopted to fully exploit information of different sensors.Adversarial learning is further introduced to extract generalized sensor-invariant features.Through explorations of both global and shared features,promising and robust RUL prediction performance can be achieved by the proposed method in the testing scenarios with sensor malfunctions.The experimental results suggest the proposed approach is well suited for real industrial applications.
基金supported by the Basic and Applied Basic Research Foundation of Guangdong Province,No.2021A1515220081(to XL)。
文摘Previous studies have confirmed the relationship between iron-dependent ferroptosis and a peripheral nerve injury-induced neuropathic pain model.However,the role of fe rroptosis in inflammatory pain remains inconclusive.Therefore,we aimed to explore whether ferroptosis in the spinal cord and do rsal root ganglion contributes to complete Freund's adjuvant(CFA)-induced painful behaviors in rats.Our results revealed that various biochemical and morphological changes were associated with ferroptosis in the spinal cord and dorsal root ganglion tissues of CFA rats.These changes included iron overload,enhanced lipid peroxidation,disorders of anti-acyl-coenzyme A synthetase long-chain family member 4 and glutathione peroxidase 4 levels,and abnormal morphological changes in mitochondria.Intrathecal treatment of liproxstatin-1(a ferroptosis inhibitor)reve rsed these ferroptosis-related changes and alleviated mechanical and thermal hype rsensitivities in CFA rats.Our study demonstrated the occurrence of fe rroptosis in the spinal cord and do rsal root ganglion tissues in a rodent model of inflammatory pain and indicated that intrathecal administration of fe rroptosis inhibitors,such as liproxstatin-1,is a potential therapeutic strategy for treating inflammatory pain.
基金financially supported by the Beijing Natural Science Foundation of China (No. 2232038)the National Natural Science Foundation of China (Nos. 52034002 and U1802253)the Fundamental Research Funds for the Central Universities (No. FRF-TT-19-001)
文摘Copper-indium-gallium-diselenide(CIGS)is a fast-evolving commercial solar cell.The firm demand for global carbon reduction and the rise of potential environmental threats necessitate spent CIGS solar cell recycling.In this paper,the sources and characteristics of valuable metals in spent CIGS solar cells were reviewed.The potential environmental impacts of CIGS,including service life,critical material,and material toxicity,were outlined.The main recovery methods of valuable metals in the various types of spent CIGS,including hydrometallurgy,pyrometallurgy,and comprehensive treatment processes,were compared and discussed.The mechanism of different recovery processes was summarized.The challenges faced by different recycling processes of spent CIGS were also covered in this review.Finally,the economic viability of the recycling process was assessed.The purpose of this review is to provide reasonable suggestions for the sustainable development of CIGS and the harmless disposal of spent CIGS.