Milk is synthesized by mammary epithelial cells of lactating mammals. The synthetic capacity of the mammary gland depends largely on the number and efficiency of functional mammary epithelial cells. Structural develop...Milk is synthesized by mammary epithelial cells of lactating mammals. The synthetic capacity of the mammary gland depends largely on the number and efficiency of functional mammary epithelial cells. Structural development of the mammary gland occurs during fetal growth, prepubertal and post-pubertal periods, pregnancy, and lactation under the control of various hormones (particularly estrogen, growth hormone, insulin-like growth factor-I, progesterone, placental lactogen, and prolactin) in a species- and stage-dependent manner. Milk is essential for the growth, development, and health of neonates. Amino acids (AA), present in both free and peptide-bound forms, are the most abundant organic nutrients in the milk of farm animals. Uptake of AA from the arterial blood of the lactating dam is the ultimate source of proteins (primarily 13-casein and a-lactalbumin) and bioactive nitrogenous metabolites in milk. Results of recent studies indicate extensive catabolism of branched-chain AA (leucine, isoleucine and valine) and arginine to synthesize glutamate, glutamine, alanine, aspartate, asparagine, proline, and polyamines. The formation of polypeptides from AA is regulated not only by hormones (e.g., prolactin, insulin and glucocorticoids) and the rate of blood flow across the lactating mammary gland, but also by concentrations of AA, lipids, glucose, vitamins and minerals in the maternal plasma, as well as the activation of the mechanistic (mammalian) target rapamycin signaling by certain AA (e.g., arginine, branched-chain AA, and glutamine). Knowledge of AA utilization (including metabolism) by mammary epithelial cells will enhance our fundamental understanding of lactation biology and has important implications for improving the efficiency of livestock production worldwide.展开更多
Recent years have witnessed growing interest in the role of peptides in animal nutrition. Chemical, enzymatic, or microbial hydrolysis of proteins in animal by-products or plant-source feedstuffs before feeding is an ...Recent years have witnessed growing interest in the role of peptides in animal nutrition. Chemical, enzymatic, or microbial hydrolysis of proteins in animal by-products or plant-source feedstuffs before feeding is an attractive means of generating high-quality small or large peptides that have both nutritional and physiological or regulatory functions in livestock, poultry and fish. These peptides may also be formed from ingested proteins in the gastrointestinal tract, but the types of resultant peptides can vary greatly with the physiological conditions of the animals and the composition of the diets. In the small intestine, large peptides are hydrolyzed to small peptides,which are absorbed into enterocytes faster than free amino acids(AAs) to provide a more balanced pattern of AAs in the blood circulation. Some peptides of plant or animal sources also have antimicrobial, antioxidant,antihypertensive, and immunomodulatory activities. Those peptides which confer biological functions beyond their nutritional value are called bioactive peptides. They are usually 2–20 AA residues in length but may consist of 〉20AA residues. Inclusion of some(e.g. 2–8%) animal-protein hydrolysates(e.g., porcine intestine, porcine mucosa,salmon viscera, or poultry tissue hydrolysates) or soybean protein hydrolysates in practical corn-and soybean mealbased diets can ensure desirable rates of growth performance and feed efficiency in weanling pigs, young calves,post-hatching poultry, and fish. Thus, protein hydrolysates hold promise in optimizing the nutrition of domestic and companion animals, as well as their health(particularly gut health) and well-being.展开更多
The intestinal epithelium(IE) forms an indispensible barrier and interface between the intestinal interstitium and the luminal environment. The IE regulates water, ion and nutrient transport while providing a barrier ...The intestinal epithelium(IE) forms an indispensible barrier and interface between the intestinal interstitium and the luminal environment. The IE regulates water, ion and nutrient transport while providing a barrier against toxins, pathogens(bacteria, fungi and virus) and antigens. The apical intercellular tight junctions(TJ) are responsible for the paracellular barrier function and regulate transepithelial flux of ions and solutes between adjacent cells. Increased intestinal permeability caused by defects in the IE TJ barrier is considered an important pathogenic factor for the development of intestinal inflammation, diarrhea and malnutrition in humans and animals. In fact, defects in the IE TJ barrier allow increased antigenic penetration, resulting in an amplified inflammatory response in inflammatory bowel disease(IBD), necrotizing enterocolitis and ischemia-reperfusion injury. Conversely, the beneficial enhancement of the intestinal TJ barrier has been shown to resolve intestinal inflammation and apoptosis in both animal models of IBD and human IBD. Autophagy(self-eating mechanism) is an intracellular lysosome-dependent degradation and recycling pathway essential for cell survival and homeostasis.Dysregulated autophagy has been shown to be directly associated with many pathological processes,including IBD. Importantly, the crosstalk between IE TJ and autophagy has been revealed recently. We showed that autophagy enhanced IE TJ barrier function by increasing transepithelial resistance and reducing the paracellular permeability of small solutes and ions, which is, in part, by targeting claudin-2,a cation-selective, pore-forming, transmembrane TJ protein, for lysosome(autophagy)-mediated degradation. Interestingly, previous studies have shown that the inflamed intestinal mucosa in patients with active IBD has increased claudin-2 expression. In addition, inflammatory cytokines(for example,tumor necrosis factor-α, interleukin-6, interleukin-13, and interleukin-17) whose levels are increased in IBD patients cause an increase in claudin-2 expression and a claudin-2-dependent increase in TJ permeability. Thus, the role of claudin-2 in intestinal pathological processes has been attributed, in part, to the increase of intestinal TJ permeability. Claudin-2 represents a new therapeutic target in treating IBD,diarrhea and malnutrition in animals and humans.展开更多
Traditionally, antibiotics are included in animal feed at subtherapeutic levels for growth promotion and disease prevention.However, recent links between in-feed antibiotics and a rise in antibiotic-resistant pathogen...Traditionally, antibiotics are included in animal feed at subtherapeutic levels for growth promotion and disease prevention.However, recent links between in-feed antibiotics and a rise in antibiotic-resistant pathogens have led to a ban of all antibiotics in livestock production by the European Union in January 2006 and a removal of medically important antibiotics in animal feeds in the United States in January 2017.An urgent need arises for antibiotic alternatives capable of maintaining animal health and productivity without triggering antimicrobial resistance.Host defense peptides(HDP) are a critical component of the animal innate immune system with direct antimicrobial and immunomodulatory activities.While in-feed supplementation of recombinant or synthetic HDP appears to be effective in maintaining animal performance and alleviating clinical symptoms in the context of disease, dietary modulation of the synthesis of endogenous host defense peptides has emerged as a cost-effective,antibiotic-alternative approach to disease control and prevention.Several different classes of smallmolecule compounds have been found capable of promoting HDP synthesis.Among the most efficacious compounds are butyrate and vitamin D.Moreover, butyrate and vitamin D synergize with each other in enhancing HDP synthesis.This review will focus on the regulation of HDP synthesis by butyrate and vitamin D in humans, chickens, pigs, and cattle and argue for potential application of HDP-inducing compounds in antibiotic-free livestock production.展开更多
The safety of a space station under normal and abnormal conditions can be ensured only by comprehensively identifying various hazards of the space station during its whole mission cycle and formulating control measure...The safety of a space station under normal and abnormal conditions can be ensured only by comprehensively identifying various hazards of the space station during its whole mission cycle and formulating control measures against each hazard.This paper describes the safety design process of the China Space Station,as well as detailed safety design measures for general hazards,fault hazards,dangerous events,and critical missions,so as to achieve safety goals as far as possible under the circumstances of limited resources and transportation capacity of the space station.The key work of safety design includes identification of hazard sources and dangerous events,formulation of safety control measures,and design of safety safeguard measures.Identification of hazards and hazardous events is based on both defined content in design schemes and previous on-orbit flight experience of manned spacecraft.The formulated safety control measures are based on analyzing each hazard to determine key links of safety control and formulate corresponding control measures for effective hazard control under minimum resource cost.In the case of a serious failure,the space station can remain safe within a certain time by its autonomous hazard disposal.展开更多
基金supported by Texas A&M Agri Life Research (H-8200)The Agriculture and Food Research Initiative Competitive Grant from the Animal Growth & Nutrient Utilization Program of the USDA National Institute of Food and Agriculture (2014-67015-21770)+4 种基金National Basic Research Program of China (2012CB126305)National Natural Science Foundation of China (31572412 and 31272450)the 111 Project (B16044)Natural Science Foundation of Hubei Province (2013CFA097 and 2013CFB325)Hubei Hundred Talent program
文摘Milk is synthesized by mammary epithelial cells of lactating mammals. The synthetic capacity of the mammary gland depends largely on the number and efficiency of functional mammary epithelial cells. Structural development of the mammary gland occurs during fetal growth, prepubertal and post-pubertal periods, pregnancy, and lactation under the control of various hormones (particularly estrogen, growth hormone, insulin-like growth factor-I, progesterone, placental lactogen, and prolactin) in a species- and stage-dependent manner. Milk is essential for the growth, development, and health of neonates. Amino acids (AA), present in both free and peptide-bound forms, are the most abundant organic nutrients in the milk of farm animals. Uptake of AA from the arterial blood of the lactating dam is the ultimate source of proteins (primarily 13-casein and a-lactalbumin) and bioactive nitrogenous metabolites in milk. Results of recent studies indicate extensive catabolism of branched-chain AA (leucine, isoleucine and valine) and arginine to synthesize glutamate, glutamine, alanine, aspartate, asparagine, proline, and polyamines. The formation of polypeptides from AA is regulated not only by hormones (e.g., prolactin, insulin and glucocorticoids) and the rate of blood flow across the lactating mammary gland, but also by concentrations of AA, lipids, glucose, vitamins and minerals in the maternal plasma, as well as the activation of the mechanistic (mammalian) target rapamycin signaling by certain AA (e.g., arginine, branched-chain AA, and glutamine). Knowledge of AA utilization (including metabolism) by mammary epithelial cells will enhance our fundamental understanding of lactation biology and has important implications for improving the efficiency of livestock production worldwide.
基金supported by the National Natural Science Foundation of China(31572416,31372319,31330075 and 31110103909)Hubei Provincial Key Project for Scientific and Technical Innovation(2014ABA022)+2 种基金Hubei Hundred Talent program,Natural Science Foundation of Hubei Province(2013CFA097)Agriculture and Food Research Initiative Competitive Grants(2014-67015-21770 and 2015-67015-23276)from the USDA National Institute of Food and AgricultureTexas A&M Agri Life Research(H-8200)
文摘Recent years have witnessed growing interest in the role of peptides in animal nutrition. Chemical, enzymatic, or microbial hydrolysis of proteins in animal by-products or plant-source feedstuffs before feeding is an attractive means of generating high-quality small or large peptides that have both nutritional and physiological or regulatory functions in livestock, poultry and fish. These peptides may also be formed from ingested proteins in the gastrointestinal tract, but the types of resultant peptides can vary greatly with the physiological conditions of the animals and the composition of the diets. In the small intestine, large peptides are hydrolyzed to small peptides,which are absorbed into enterocytes faster than free amino acids(AAs) to provide a more balanced pattern of AAs in the blood circulation. Some peptides of plant or animal sources also have antimicrobial, antioxidant,antihypertensive, and immunomodulatory activities. Those peptides which confer biological functions beyond their nutritional value are called bioactive peptides. They are usually 2–20 AA residues in length but may consist of 〉20AA residues. Inclusion of some(e.g. 2–8%) animal-protein hydrolysates(e.g., porcine intestine, porcine mucosa,salmon viscera, or poultry tissue hydrolysates) or soybean protein hydrolysates in practical corn-and soybean mealbased diets can ensure desirable rates of growth performance and feed efficiency in weanling pigs, young calves,post-hatching poultry, and fish. Thus, protein hydrolysates hold promise in optimizing the nutrition of domestic and companion animals, as well as their health(particularly gut health) and well-being.
基金supported, in part, by the Evergreen Scholarship of the Wuhan Polytechnic University (to CAAH) and Texas A&M Agri Life Research (H-8200 to GW)National Natural Science Foundation of China (No. 31372319 and 31402084)(to YH)
文摘The intestinal epithelium(IE) forms an indispensible barrier and interface between the intestinal interstitium and the luminal environment. The IE regulates water, ion and nutrient transport while providing a barrier against toxins, pathogens(bacteria, fungi and virus) and antigens. The apical intercellular tight junctions(TJ) are responsible for the paracellular barrier function and regulate transepithelial flux of ions and solutes between adjacent cells. Increased intestinal permeability caused by defects in the IE TJ barrier is considered an important pathogenic factor for the development of intestinal inflammation, diarrhea and malnutrition in humans and animals. In fact, defects in the IE TJ barrier allow increased antigenic penetration, resulting in an amplified inflammatory response in inflammatory bowel disease(IBD), necrotizing enterocolitis and ischemia-reperfusion injury. Conversely, the beneficial enhancement of the intestinal TJ barrier has been shown to resolve intestinal inflammation and apoptosis in both animal models of IBD and human IBD. Autophagy(self-eating mechanism) is an intracellular lysosome-dependent degradation and recycling pathway essential for cell survival and homeostasis.Dysregulated autophagy has been shown to be directly associated with many pathological processes,including IBD. Importantly, the crosstalk between IE TJ and autophagy has been revealed recently. We showed that autophagy enhanced IE TJ barrier function by increasing transepithelial resistance and reducing the paracellular permeability of small solutes and ions, which is, in part, by targeting claudin-2,a cation-selective, pore-forming, transmembrane TJ protein, for lysosome(autophagy)-mediated degradation. Interestingly, previous studies have shown that the inflamed intestinal mucosa in patients with active IBD has increased claudin-2 expression. In addition, inflammatory cytokines(for example,tumor necrosis factor-α, interleukin-6, interleukin-13, and interleukin-17) whose levels are increased in IBD patients cause an increase in claudin-2 expression and a claudin-2-dependent increase in TJ permeability. Thus, the role of claudin-2 in intestinal pathological processes has been attributed, in part, to the increase of intestinal TJ permeability. Claudin-2 represents a new therapeutic target in treating IBD,diarrhea and malnutrition in animals and humans.
基金supported in part by Oklahoma Center for the Advancement of Science and Technology grants(AR12.2-077,HR12-051,and AR15.049)Oklahoma Agricultural Experiment Station Project(H-3025)+1 种基金National Science Foundation of China grant(31528018)supported by a USDA-NIFA National Needs Fellowship grant(2013-38420-20500)
文摘Traditionally, antibiotics are included in animal feed at subtherapeutic levels for growth promotion and disease prevention.However, recent links between in-feed antibiotics and a rise in antibiotic-resistant pathogens have led to a ban of all antibiotics in livestock production by the European Union in January 2006 and a removal of medically important antibiotics in animal feeds in the United States in January 2017.An urgent need arises for antibiotic alternatives capable of maintaining animal health and productivity without triggering antimicrobial resistance.Host defense peptides(HDP) are a critical component of the animal innate immune system with direct antimicrobial and immunomodulatory activities.While in-feed supplementation of recombinant or synthetic HDP appears to be effective in maintaining animal performance and alleviating clinical symptoms in the context of disease, dietary modulation of the synthesis of endogenous host defense peptides has emerged as a cost-effective,antibiotic-alternative approach to disease control and prevention.Several different classes of smallmolecule compounds have been found capable of promoting HDP synthesis.Among the most efficacious compounds are butyrate and vitamin D.Moreover, butyrate and vitamin D synergize with each other in enhancing HDP synthesis.This review will focus on the regulation of HDP synthesis by butyrate and vitamin D in humans, chickens, pigs, and cattle and argue for potential application of HDP-inducing compounds in antibiotic-free livestock production.
基金supported by the Chinese manned space-flight program.
文摘The safety of a space station under normal and abnormal conditions can be ensured only by comprehensively identifying various hazards of the space station during its whole mission cycle and formulating control measures against each hazard.This paper describes the safety design process of the China Space Station,as well as detailed safety design measures for general hazards,fault hazards,dangerous events,and critical missions,so as to achieve safety goals as far as possible under the circumstances of limited resources and transportation capacity of the space station.The key work of safety design includes identification of hazard sources and dangerous events,formulation of safety control measures,and design of safety safeguard measures.Identification of hazards and hazardous events is based on both defined content in design schemes and previous on-orbit flight experience of manned spacecraft.The formulated safety control measures are based on analyzing each hazard to determine key links of safety control and formulate corresponding control measures for effective hazard control under minimum resource cost.In the case of a serious failure,the space station can remain safe within a certain time by its autonomous hazard disposal.