对已有的Z变换时域有限差分法(Z-transformation Finite Difference Time Domain,Z-FDTD)在电磁波与非均匀磁化等离子体中的传输特性分析的计算误差问题进行了研究,并探讨了一种修正计算误差的Z变换时域有限差分方法(Modified Z-transfo...对已有的Z变换时域有限差分法(Z-transformation Finite Difference Time Domain,Z-FDTD)在电磁波与非均匀磁化等离子体中的传输特性分析的计算误差问题进行了研究,并探讨了一种修正计算误差的Z变换时域有限差分方法(Modified Z-transform Finite Difference Time Domain,MZ-FDTD),以提升Z-FDTD方法对非均匀磁化等离子体的适用性。对MZ-FDTD和Z-FDTD之间的计算误差问题,通过严格的公式推导求得该误差的计算公式,并引入误差分析因子,对比分析了该误差受空间步长和非均匀磁化等离子体的物理特性的影响特征,在充分的误差分析与网格参数对比后,以电磁波在非均匀磁化等离子体中的传输特性为分析目标,举例说明了MZ-FDTD的优越性。研究结果表明,相比于经典Z-FDTD,通过MZ-FDTD方法计算得到的数值结果具有更高的计算准确度,较低的运行时间和较少的运行内存占用。此外,对电磁波在非均匀等离子体中传输特性分析的举例说明也证明了相比于Z-FDTD,优化的Z-FDTD方法无论是在较低频段还是较高频段都保持较好的稳定性。在今后的工作中,使用MZ-FDTD方法研究非均匀磁化等离子体问题将会获得更好的计算结果,这项工作中的误差分析方法也将对某些计算电磁学在等离子体中的应用与优化工作起到一定的帮助作用。展开更多
设计了包含双层空竹的超表面,通过调节其晶格周期实现了不同阶晶格模式与超表面本征模式间的耦合,获得了3个强耦合区,并在两个晶格周期处实现了弗里德里希–温特根型连续域束缚态(Friedrich-Wintgen bound states in the continuum,FW-B...设计了包含双层空竹的超表面,通过调节其晶格周期实现了不同阶晶格模式与超表面本征模式间的耦合,获得了3个强耦合区,并在两个晶格周期处实现了弗里德里希–温特根型连续域束缚态(Friedrich-Wintgen bound states in the continuum,FW-BIC)。基于耦合模理论对其进行分析,理论分析结果与模拟结果吻合,进一步证明了结构的有效性。讨论了在介质间隔层中基于强耦合和FW-BIC的局域磁场增强,发现最大磁场强度是入射太赫兹波磁场强度的41 209倍,且该值是单纯的由超表面电磁共振产生的磁场强度的4倍。这项研究将为强场太赫兹产生和太赫兹非线性研究提供参考。展开更多
文摘对已有的Z变换时域有限差分法(Z-transformation Finite Difference Time Domain,Z-FDTD)在电磁波与非均匀磁化等离子体中的传输特性分析的计算误差问题进行了研究,并探讨了一种修正计算误差的Z变换时域有限差分方法(Modified Z-transform Finite Difference Time Domain,MZ-FDTD),以提升Z-FDTD方法对非均匀磁化等离子体的适用性。对MZ-FDTD和Z-FDTD之间的计算误差问题,通过严格的公式推导求得该误差的计算公式,并引入误差分析因子,对比分析了该误差受空间步长和非均匀磁化等离子体的物理特性的影响特征,在充分的误差分析与网格参数对比后,以电磁波在非均匀磁化等离子体中的传输特性为分析目标,举例说明了MZ-FDTD的优越性。研究结果表明,相比于经典Z-FDTD,通过MZ-FDTD方法计算得到的数值结果具有更高的计算准确度,较低的运行时间和较少的运行内存占用。此外,对电磁波在非均匀等离子体中传输特性分析的举例说明也证明了相比于Z-FDTD,优化的Z-FDTD方法无论是在较低频段还是较高频段都保持较好的稳定性。在今后的工作中,使用MZ-FDTD方法研究非均匀磁化等离子体问题将会获得更好的计算结果,这项工作中的误差分析方法也将对某些计算电磁学在等离子体中的应用与优化工作起到一定的帮助作用。
文摘设计了包含双层空竹的超表面,通过调节其晶格周期实现了不同阶晶格模式与超表面本征模式间的耦合,获得了3个强耦合区,并在两个晶格周期处实现了弗里德里希–温特根型连续域束缚态(Friedrich-Wintgen bound states in the continuum,FW-BIC)。基于耦合模理论对其进行分析,理论分析结果与模拟结果吻合,进一步证明了结构的有效性。讨论了在介质间隔层中基于强耦合和FW-BIC的局域磁场增强,发现最大磁场强度是入射太赫兹波磁场强度的41 209倍,且该值是单纯的由超表面电磁共振产生的磁场强度的4倍。这项研究将为强场太赫兹产生和太赫兹非线性研究提供参考。