目的研究基于近红外光谱模型转移的牛奶蛋白检测方法。方法分别采用实验室与在线检测近红外光谱仪采集生产过程中原料奶样品的近红外光谱,研究斜率截距法(slope/bias,S/B)、分段直接标准化(piecewise direct standardization,PDS)算法、...目的研究基于近红外光谱模型转移的牛奶蛋白检测方法。方法分别采用实验室与在线检测近红外光谱仪采集生产过程中原料奶样品的近红外光谱,研究斜率截距法(slope/bias,S/B)、分段直接标准化(piecewise direct standardization,PDS)算法、Shenk’s方法在不同仪器测量光谱之间模型转移应用,优化模型参数,提高实验室仪器建立的校正模型应用于在线光谱仪器的预测精度。结果经过Shenk’s算法转移,主从机的光谱平均差异降低为0.0075,光谱校正率达到98.95%。利用模型转移方法与偏最小二乘模型结合,将实验室分析光谱仪建立的模型用于生产在线光谱仪测量光谱预测,显著提高了牛奶中蛋白质含量预测准确度,不同仪器之间模型预测相对均方根误差从5.52%下降到2.03%。结论本研究的方法实现了实验室分析与在线检测仪器测量光谱及定量分析模型转移共享,为近红外在线检测的智能化改进提供了基础。展开更多
为了实现晒青毛茶儿茶素含量的快速检测,该研究利用高效液相色谱技术(High Performance Liquid Chromatography,HPLC)测定了50份晒青毛茶样品中的表没食子茶素没食子酸酯(Epigallocatechin Gallate,EGCG)、表没食子儿茶素(Epigallocatec...为了实现晒青毛茶儿茶素含量的快速检测,该研究利用高效液相色谱技术(High Performance Liquid Chromatography,HPLC)测定了50份晒青毛茶样品中的表没食子茶素没食子酸酯(Epigallocatechin Gallate,EGCG)、表没食子儿茶素(Epigallocatechin,EGC)、没食子酸(Gallic Acid,GA)三种儿茶素单体含量,结合样品的近红外光谱,分别建立了晒青毛茶三种儿茶素单体含量的偏最小二乘法(Partial Least Squares,PLS)模型,并对模型进行验证。实验结果表明,基于EGCG、EGC、GA含量所建立近红外模型的决定系数(Coefficient of Determination,R2)分别为99.99%、99.99%、99.92%;校正标准差(Root Mean Square Error of Calibration,RMSEC)分别为0.17、0.15、0.10;相对标准差(Relative Standard Deviation,RSD)分别为0.19%、0.27%、0.56%;外部验证的结果显示,三种儿茶素单体含量模型的预测值与真实值的平均绝对误差分别为0.13、0.12、0.07;平均相对误差分别为0.17、0.25、0.45。实验结果表明,该研究建立的近红外分析模型具有较高的预测准确度和稳定性,在快速检测晒青毛茶儿茶素方面具有潜在应用价值。展开更多
文摘目的研究基于近红外光谱模型转移的牛奶蛋白检测方法。方法分别采用实验室与在线检测近红外光谱仪采集生产过程中原料奶样品的近红外光谱,研究斜率截距法(slope/bias,S/B)、分段直接标准化(piecewise direct standardization,PDS)算法、Shenk’s方法在不同仪器测量光谱之间模型转移应用,优化模型参数,提高实验室仪器建立的校正模型应用于在线光谱仪器的预测精度。结果经过Shenk’s算法转移,主从机的光谱平均差异降低为0.0075,光谱校正率达到98.95%。利用模型转移方法与偏最小二乘模型结合,将实验室分析光谱仪建立的模型用于生产在线光谱仪测量光谱预测,显著提高了牛奶中蛋白质含量预测准确度,不同仪器之间模型预测相对均方根误差从5.52%下降到2.03%。结论本研究的方法实现了实验室分析与在线检测仪器测量光谱及定量分析模型转移共享,为近红外在线检测的智能化改进提供了基础。
文摘为了实现晒青毛茶儿茶素含量的快速检测,该研究利用高效液相色谱技术(High Performance Liquid Chromatography,HPLC)测定了50份晒青毛茶样品中的表没食子茶素没食子酸酯(Epigallocatechin Gallate,EGCG)、表没食子儿茶素(Epigallocatechin,EGC)、没食子酸(Gallic Acid,GA)三种儿茶素单体含量,结合样品的近红外光谱,分别建立了晒青毛茶三种儿茶素单体含量的偏最小二乘法(Partial Least Squares,PLS)模型,并对模型进行验证。实验结果表明,基于EGCG、EGC、GA含量所建立近红外模型的决定系数(Coefficient of Determination,R2)分别为99.99%、99.99%、99.92%;校正标准差(Root Mean Square Error of Calibration,RMSEC)分别为0.17、0.15、0.10;相对标准差(Relative Standard Deviation,RSD)分别为0.19%、0.27%、0.56%;外部验证的结果显示,三种儿茶素单体含量模型的预测值与真实值的平均绝对误差分别为0.13、0.12、0.07;平均相对误差分别为0.17、0.25、0.45。实验结果表明,该研究建立的近红外分析模型具有较高的预测准确度和稳定性,在快速检测晒青毛茶儿茶素方面具有潜在应用价值。