随着射电望远镜口径增大、观测频率提高,对其指向精度的要求也越来越高.然而,望远镜服役于野外台站,台址风扰对天线指向精度的影响在高频段观测时已不能忽略.由于风扰的时变性,现有的抗风方法无法保障大口径高指向精度望远镜在高频段的...随着射电望远镜口径增大、观测频率提高,对其指向精度的要求也越来越高.然而,望远镜服役于野外台站,台址风扰对天线指向精度的影响在高频段观测时已不能忽略.由于风扰的时变性,现有的抗风方法无法保障大口径高指向精度望远镜在高频段的有效观测时长.因此,提出了一种基于风障精确布置改善台址风环境的方法.通过数值模拟构建了风障仿真模型,并将仿真结果与风洞实测数据比较,两种孔隙率风障的平均误差分别为3.7%和6.1%,保证了风障模型的可靠性.以新疆奇台射电望远镜(QiTai radio Telescope,QTT)台址为例,基于QTT台址斜坡地形构建了计算域模型,开展单风障不同高度、不同孔隙率的系列风场仿真试验,得到了风障参量与下游挡风效果的关系.基于单风障合理高度和最优孔隙率设置南北风障,仿真结果表明在确定高度下最优孔隙率可以组合,孔隙率0.1-0.1组合的风障挡风效果最优,南方向来风在天线区域可以有效降低75%以上的风速.展开更多
Dwarf irregular galaxies(dIrrs),as rotationally supported systems,have more reliable J-factor measurements than dwarf spheroidal galaxies and have received attention as targets for dark matter detection in recent year...Dwarf irregular galaxies(dIrrs),as rotationally supported systems,have more reliable J-factor measurements than dwarf spheroidal galaxies and have received attention as targets for dark matter detection in recent years.In this paper,we use 10 yr of IceCube muon-track data and an unbinned maximum-likelihood-ratio method to search for neutrino signals beyond the background from the directions of seven dIrrs,aiming to detect neutrinos produced by heavy annihilation dark matter.We do not detect any significant signal.Based on such null results,we calculate the upper limits on the velocity-averaged annihilation cross section for 1 TeV–10 PeV dark matter.Our limits,although weaker than the strictest constraints in the literature in this mass range,are also a good complement to the existing results considering the more reliable J-factor measurements of dIrrs.展开更多
Cross-matching is a key technique to achieve fusion of multi-band astronomical catalogs. Due to different equipment such as various astronomical telescopes, the existence of measurement errors, and proper motions of t...Cross-matching is a key technique to achieve fusion of multi-band astronomical catalogs. Due to different equipment such as various astronomical telescopes, the existence of measurement errors, and proper motions of the celestial bodies, the same celestial object will have different positions in different catalogs, making it difficult to integrate multi-band or full-band astronomical data. In this study, we propose an online cross-matching method based on pseudo-spherical indexing techniques and develop a service combining with high performance computing system(Taurus) to improve cross-matching efficiency, which is designed for the Data Center of Xinjiang Astronomical Observatory. Specifically, we use Quad Tree Cube to divide the spherical blocks of the celestial object and map the 2D space composed of R.A. and decl. to 1D space and achieve correspondence between real celestial objects and spherical patches. Finally, we verify the performance of the service using Gaia 3 and PPMXL catalogs. Meanwhile, we send the matching results to VO tools-Topcat and Aladin respectively to get visual results. The experimental results show that the service effectively solves the speed bottleneck problem of crossmatching caused by frequent I/O, and significantly improves the retrieval and matching speed of massive astronomical data.展开更多
Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviat...Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviation in the speckle masking reconstruction method,leading to the appearance of spurious imaging artifacts.Relying only on linear image degradation principles to reconstruct solar images is insufficient.To solve this problem,we propose the multiframe blind deconvolution combined with non-rigid alignment(MFBD-CNRA)method for solar image reconstruction.We consider image distortion caused by atmospheric turbulence and use non-rigid alignment to correct pixel-level distortion,thereby achieving nonlinear constraints to complement image intensity changes.After creating the corrected speckle image,we use the linear method to solve the wavefront phase,obtaining the target image.We verify the effectiveness of our method results,compared with others,using solar observation data from the 1 m new vacuum solar telescope(NVST).This new method successfully reconstructs high-resolution images of solar observations with a Fried parameter r0 of approximately 10 cm,and enhances images at high frequency.When r0 is approximately 5 cm,the new method is even more effective.It reconstructs the edges of solar graining and sunspots,and is greatly enhanced at mid and high frequency compared with other methods.Comparisons confirm the effectiveness of this method,with respect to both nonlinear and linear constraints in solar image reconstruction.This provides a suitable solution for image reconstruction in ground-based solar observations under strong atmospheric turbulence.展开更多
天文观测数据是天文研究的基础,但传统的集中式数据检索方法已难以满足日益增长的海量天文数据的高性能检索和查询需求.提出了一种基于Elastic Search分布式搜索引擎,通过River机制对现有的海量FITS(Flexible Image Transport System)...天文观测数据是天文研究的基础,但传统的集中式数据检索方法已难以满足日益增长的海量天文数据的高性能检索和查询需求.提出了一种基于Elastic Search分布式搜索引擎,通过River机制对现有的海量FITS(Flexible Image Transport System)数据进行索引构建,从而实现海量FITS数据高效检索的方法,并讨论了其中的近实时检索和查询的关键技术.实测结果表明,在百万到千万级的天文数据量下,该方法可获得极高的检索性能,并能够很方便地集成到现有的天文数据归档系统中,完全可以满足当前国内各类望远镜系统天文数据的归档要求.展开更多
文摘随着射电望远镜口径增大、观测频率提高,对其指向精度的要求也越来越高.然而,望远镜服役于野外台站,台址风扰对天线指向精度的影响在高频段观测时已不能忽略.由于风扰的时变性,现有的抗风方法无法保障大口径高指向精度望远镜在高频段的有效观测时长.因此,提出了一种基于风障精确布置改善台址风环境的方法.通过数值模拟构建了风障仿真模型,并将仿真结果与风洞实测数据比较,两种孔隙率风障的平均误差分别为3.7%和6.1%,保证了风障模型的可靠性.以新疆奇台射电望远镜(QiTai radio Telescope,QTT)台址为例,基于QTT台址斜坡地形构建了计算域模型,开展单风障不同高度、不同孔隙率的系列风场仿真试验,得到了风障参量与下游挡风效果的关系.基于单风障合理高度和最优孔隙率设置南北风障,仿真结果表明在确定高度下最优孔隙率可以组合,孔隙率0.1-0.1组合的风障挡风效果最优,南方向来风在天线区域可以有效降低75%以上的风速.
基金supported by the National Key Research and Development Program of China(No.2022YFF0503304)the National Natural Science Foundation of China(No.12133003)and Guangxi Science Foundation(No.2019AC20334)。
文摘Dwarf irregular galaxies(dIrrs),as rotationally supported systems,have more reliable J-factor measurements than dwarf spheroidal galaxies and have received attention as targets for dark matter detection in recent years.In this paper,we use 10 yr of IceCube muon-track data and an unbinned maximum-likelihood-ratio method to search for neutrino signals beyond the background from the directions of seven dIrrs,aiming to detect neutrinos produced by heavy annihilation dark matter.We do not detect any significant signal.Based on such null results,we calculate the upper limits on the velocity-averaged annihilation cross section for 1 TeV–10 PeV dark matter.Our limits,although weaker than the strictest constraints in the literature in this mass range,are also a good complement to the existing results considering the more reliable J-factor measurements of dIrrs.
基金supported by the National Key R&D Program of China (Nos. 2022YFF0711502 and 2021YFC2203502)the National Natural Science Foundation of China (NSFC)(12173077 and 12003062)+6 种基金the Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region (2022D14020)the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (grant No. PTYQ2022YZZD01)China National Astronomical Data Center (NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China (MOF)and administrated by the Chinese Academy of Sciences (CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01A360)supported by Astronomical Big Data Joint Research Center,co-founded by National Astronomical Observatories,Chinese Academy of Sciences。
文摘Cross-matching is a key technique to achieve fusion of multi-band astronomical catalogs. Due to different equipment such as various astronomical telescopes, the existence of measurement errors, and proper motions of the celestial bodies, the same celestial object will have different positions in different catalogs, making it difficult to integrate multi-band or full-band astronomical data. In this study, we propose an online cross-matching method based on pseudo-spherical indexing techniques and develop a service combining with high performance computing system(Taurus) to improve cross-matching efficiency, which is designed for the Data Center of Xinjiang Astronomical Observatory. Specifically, we use Quad Tree Cube to divide the spherical blocks of the celestial object and map the 2D space composed of R.A. and decl. to 1D space and achieve correspondence between real celestial objects and spherical patches. Finally, we verify the performance of the service using Gaia 3 and PPMXL catalogs. Meanwhile, we send the matching results to VO tools-Topcat and Aladin respectively to get visual results. The experimental results show that the service effectively solves the speed bottleneck problem of crossmatching caused by frequent I/O, and significantly improves the retrieval and matching speed of massive astronomical data.
基金sponsored by the National Natural Science Foundation of China(NSFC)under the grant numbers(11773073,11873027,U2031140,11833010)Yunnan Key Laboratory of Solar Physics and Space Science under the number 202205AG070009+1 种基金Yunnan Provincial Science and Technology Department(202103AD50013,202105AB160001,202305AH340002)the GHfund A202302013242 and CAS“Light of West China”Program 202305AS350029.
文摘Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviation in the speckle masking reconstruction method,leading to the appearance of spurious imaging artifacts.Relying only on linear image degradation principles to reconstruct solar images is insufficient.To solve this problem,we propose the multiframe blind deconvolution combined with non-rigid alignment(MFBD-CNRA)method for solar image reconstruction.We consider image distortion caused by atmospheric turbulence and use non-rigid alignment to correct pixel-level distortion,thereby achieving nonlinear constraints to complement image intensity changes.After creating the corrected speckle image,we use the linear method to solve the wavefront phase,obtaining the target image.We verify the effectiveness of our method results,compared with others,using solar observation data from the 1 m new vacuum solar telescope(NVST).This new method successfully reconstructs high-resolution images of solar observations with a Fried parameter r0 of approximately 10 cm,and enhances images at high frequency.When r0 is approximately 5 cm,the new method is even more effective.It reconstructs the edges of solar graining and sunspots,and is greatly enhanced at mid and high frequency compared with other methods.Comparisons confirm the effectiveness of this method,with respect to both nonlinear and linear constraints in solar image reconstruction.This provides a suitable solution for image reconstruction in ground-based solar observations under strong atmospheric turbulence.
文摘天文观测数据是天文研究的基础,但传统的集中式数据检索方法已难以满足日益增长的海量天文数据的高性能检索和查询需求.提出了一种基于Elastic Search分布式搜索引擎,通过River机制对现有的海量FITS(Flexible Image Transport System)数据进行索引构建,从而实现海量FITS数据高效检索的方法,并讨论了其中的近实时检索和查询的关键技术.实测结果表明,在百万到千万级的天文数据量下,该方法可获得极高的检索性能,并能够很方便地集成到现有的天文数据归档系统中,完全可以满足当前国内各类望远镜系统天文数据的归档要求.