In this paper,new light curves(LCs) of contact eclipsing binary(CEB) systems LX Lyn and V0853 Aur are presented and analyzed by using the 2015 version of the Wilson-Devinney(W-D) code.In order to explain their asymmet...In this paper,new light curves(LCs) of contact eclipsing binary(CEB) systems LX Lyn and V0853 Aur are presented and analyzed by using the 2015 version of the Wilson-Devinney(W-D) code.In order to explain their asymmetric LCs,cool starspots on the components were employed.It is suggested that their fill-out degrees are f=12.0%(LX Lyn) and f=26.3%(V0853 Aur).At the same time,we found that LX Lyn is a W-type eclipsing binary(EB) with an orbital inclination of i=84°.88 and a mass ratio of q=2.31.V0853 Aur is also a W-type CEB with a mass ratio of q=2.77 and an orbital inclination of i= 79°.26.Based on all available times of light minimum,their orbital period changes are studied by using the O-C method.The O-C diagram of LX Lyn reveals a cyclic oscillation with a period of about 14.84 yr and an amplitude of 0.0019 days,which can be explained by the light-travel time effect(LTTE) due to the presence of a third body with a minimum mass of0.06M_⊙.For V0853 Aur,it is discovered that the O-C diagram of the system also shows a cyclic oscillation with a period of 9.64 yr and an amplitude of 0.03365 days.The cyclic oscillation of V0853 Aur can be attributed to the LTTE by means of a third body with a mass no less than 3.77M_⊙.The third body may play an important role in the formation and evolution of these systems.展开更多
The results of seventeen years of speckle interferometric monitoring of seven objects(Chara 122Aa,GJ 3010,HIP1987,GJ 3076,HIP 11253,HIP 11352,and HIP 14929)are presented.Observational data were obtained at the 6 m Big...The results of seventeen years of speckle interferometric monitoring of seven objects(Chara 122Aa,GJ 3010,HIP1987,GJ 3076,HIP 11253,HIP 11352,and HIP 14929)are presented.Observational data were obtained at the 6 m Big Telescope Alt-azimuthal Special Astrophysical Observatory of the Russian Academy of Science(BTA SAO RAS)from 2007 to the present.Analysis of previously published and new measurements made it possible to construct completely new orbits for Chara 122Aa,HIP 11253,and HIP 14929.The orbit of GJ 3076 cannot be constructed accurately due to the large influence of the weights assigned to the measurements.The resulting orbital solutions are classified based on a grading scheme suggested by W.I.Hartkopf,B.D.Mason and C.E.Worley;most orbits are“definitive”(Grade 1).The mass sums and masses of components calculated by two independent methods using Hipparcos and Gaia DR2 and DR3 parallaxes were compared for the objects under study.展开更多
This paper investigates the spin-up of a mass-accreting star in a close binary system passing through the first stage of mass exchange in the Hertzsprung gap. Inside an accreting star, angular momentum is carried by m...This paper investigates the spin-up of a mass-accreting star in a close binary system passing through the first stage of mass exchange in the Hertzsprung gap. Inside an accreting star, angular momentum is carried by meridional circulation and shear turbulence. The circulation carries part of the angular momentum of the accreted layers to the accretor's surface. The greater the rate of arrival of angular momentum in the accretor is, the greater this part. It is assumed that this part of the angular momentum can be removed by the disk further from the accretor. If the angular momentum in the matter entering the accretor is more than half the Keplerian value, then the angular momentum obtained by the accretor during mass exchange stage does not depend on the rate of arrival of angular momentum. The accretor may have the characteristics of a Be-star immediately after the end of mass exchange.展开更多
The spinning-up of the accreting component in the process of conservative mass exchange is considered in binary systems—progenitors of systems consisting of a main sequence Be-star and an O-subdwarf.During the mass e...The spinning-up of the accreting component in the process of conservative mass exchange is considered in binary systems—progenitors of systems consisting of a main sequence Be-star and an O-subdwarf.During the mass exchange,the meridional circulation transfers 80%-85%of the angular momentum that entered the accretor together with the accreted matter to the accretor surface.This angular momentum is removed from the accretor by the disk.When the mass exchange finishes,the accretor has a rotation typical of classical Be-type stars.展开更多
Contact binaries at various stages of evolution unveil various operating mechanisms that drive them.We report the photometric and period variation analysis of two contact binaries EV Cnc and AH Cnc in open cluster M67...Contact binaries at various stages of evolution unveil various operating mechanisms that drive them.We report the photometric and period variation analysis of two contact binaries EV Cnc and AH Cnc in open cluster M67.We observed the cluster from the JCBT 1.3 m telescope and utilized TESS and Kepler observations.The photometric solutions of EV Cnc and AH Cnc revealed a mass ratio of q~0.41 and~0.15 with an inclination of i=42°and87°respectively.These solutions suggest that EV Cnc is probably a semi-detached and AH Cnc is a deep low-mass ratio contact binary.The study of O-C variation analysis indicates that for both systems,the period is increasing which suggests the mass transfer is occurring from secondary to primary.In the case of AH Cnc and based on simulations by randomly varying the time of minima to fit the LITE solution,we noted the third body orbital period to be around P_(3)=26.82±2.54 yr,which is different from earlier reported values and conclude that future observations are required to confirm this scenario.We compare these two systems with other similar contact binaries to get an estimate of the final configuration of the respective systems.展开更多
V0405 Dra is a W UMa-type binary star.Based on the TESS data,we have conducted an orbital period study and performed a light curve analysis for the system.The orbital period study reveals that the O-C curve for V0405 ...V0405 Dra is a W UMa-type binary star.Based on the TESS data,we have conducted an orbital period study and performed a light curve analysis for the system.The orbital period study reveals that the O-C curve for V0405 Dra exhibits secular decrease at an extremely high rate of d P/dt=-2.71×10^(-6)day year^(-1),along with periodic variations characterized by an amplitude of A_(3)=0.0032 day and a period of P_(3)=1.413 years.The orbital periodic change is possibly due to the light-travel time effect resulting from an additional third body in the system,for which we estimate a minimum mass of M_(3)=0.77M_(⊙).By employing the 2013 version of the Wilson-Devinney(W-D)method to synthesize a light curve,we derived photometric solutions indicating that V0405 Dra is a new deep(f=68.7%)and low-mass ratio(q=0.175)contact binary.The fast decrease in its orbital period is likely caused by mass transfer from the more massive primary star to the less massive secondary star,or due to angular momentum loss.With further mass transfer and loss of angular momentum,the binary will gradually evolve into a tighter contact configuration,eventually leading to a merger into a single star,following the evolutionary paths suggested for such deep and low mass ratio contact binaries.展开更多
We conducted the first light curve study of the binary star EL Tuc within the Binary Systems of South and North project's framework.The photometric observations were made using standard multiband BVR_cI_c filters ...We conducted the first light curve study of the binary star EL Tuc within the Binary Systems of South and North project's framework.The photometric observations were made using standard multiband BVR_cI_c filters at an observatory in Argentina.We presented a new ephemeris for EL Tuc and a linear fit to the O–C diagram,utilizing our extracted times of minima and additional literature.We employed the PHysics Of Eclipsing BinariEs Python code and the Markov chain Monte Carlo approach for the system's light curve analysis.The target system's light curve solution required a cold starspot on the hotter component.We conclude that EL Tuc is a total contact binary system with a low mass ratio of q=0.172±0.002,an orbital inclination of i=83°.74±0°.40,and a fillout factor of f=53.7%±1.6%.We used the P-a relationship and the Gaia Data Release 3 parallax method to determine the absolute parameters of EL Tuc to compare the precision of our results.This system was classified as W-type based on the mass and effective temperature of the companion stars.The positions of the systems were depicted on the M-L,M-R,T-M,and q-Lratiodiagrams.The relationship between the spectroscopic and photometric mass ratios of binaries was discussed.展开更多
基金partly supported by the Joint Research Fund in Astronomy (grant Nos. U1931101, 42364001) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences (CAS)the National Natural Science Foundation of China (NSFC, Grant No. 11933008)+3 种基金the Guizhou Provincial Science and Technology Foundation (grant Nos.[2020]1Y017, ZK[2022]322)the Foundation of Education Bureau of Guizhou Province,China (grant No. KY (2020) 003)partially supported by the Open Project Program of the CAS Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciencesthe TESS team for its support。
文摘In this paper,new light curves(LCs) of contact eclipsing binary(CEB) systems LX Lyn and V0853 Aur are presented and analyzed by using the 2015 version of the Wilson-Devinney(W-D) code.In order to explain their asymmetric LCs,cool starspots on the components were employed.It is suggested that their fill-out degrees are f=12.0%(LX Lyn) and f=26.3%(V0853 Aur).At the same time,we found that LX Lyn is a W-type eclipsing binary(EB) with an orbital inclination of i=84°.88 and a mass ratio of q=2.31.V0853 Aur is also a W-type CEB with a mass ratio of q=2.77 and an orbital inclination of i= 79°.26.Based on all available times of light minimum,their orbital period changes are studied by using the O-C method.The O-C diagram of LX Lyn reveals a cyclic oscillation with a period of about 14.84 yr and an amplitude of 0.0019 days,which can be explained by the light-travel time effect(LTTE) due to the presence of a third body with a minimum mass of0.06M_⊙.For V0853 Aur,it is discovered that the O-C diagram of the system also shows a cyclic oscillation with a period of 9.64 yr and an amplitude of 0.03365 days.The cyclic oscillation of V0853 Aur can be attributed to the LTTE by means of a third body with a mass no less than 3.77M_⊙.The third body may play an important role in the formation and evolution of these systems.
基金the financial support of grant No.075-15-2022-262(13.MNPMU.21.0003)of the Ministry of Science and Higher Education of the Russian Federation。
文摘The results of seventeen years of speckle interferometric monitoring of seven objects(Chara 122Aa,GJ 3010,HIP1987,GJ 3076,HIP 11253,HIP 11352,and HIP 14929)are presented.Observational data were obtained at the 6 m Big Telescope Alt-azimuthal Special Astrophysical Observatory of the Russian Academy of Science(BTA SAO RAS)from 2007 to the present.Analysis of previously published and new measurements made it possible to construct completely new orbits for Chara 122Aa,HIP 11253,and HIP 14929.The orbit of GJ 3076 cannot be constructed accurately due to the large influence of the weights assigned to the measurements.The resulting orbital solutions are classified based on a grading scheme suggested by W.I.Hartkopf,B.D.Mason and C.E.Worley;most orbits are“definitive”(Grade 1).The mass sums and masses of components calculated by two independent methods using Hipparcos and Gaia DR2 and DR3 parallaxes were compared for the objects under study.
基金supported by the Ministry of Science and EducationFEUZ-2023-0019。
文摘This paper investigates the spin-up of a mass-accreting star in a close binary system passing through the first stage of mass exchange in the Hertzsprung gap. Inside an accreting star, angular momentum is carried by meridional circulation and shear turbulence. The circulation carries part of the angular momentum of the accreted layers to the accretor's surface. The greater the rate of arrival of angular momentum in the accretor is, the greater this part. It is assumed that this part of the angular momentum can be removed by the disk further from the accretor. If the angular momentum in the matter entering the accretor is more than half the Keplerian value, then the angular momentum obtained by the accretor during mass exchange stage does not depend on the rate of arrival of angular momentum. The accretor may have the characteristics of a Be-star immediately after the end of mass exchange.
基金supported by the Ministry of Science and Education,FEUZ-2020-0038。
文摘The spinning-up of the accreting component in the process of conservative mass exchange is considered in binary systems—progenitors of systems consisting of a main sequence Be-star and an O-subdwarf.During the mass exchange,the meridional circulation transfers 80%-85%of the angular momentum that entered the accretor together with the accreted matter to the accretor surface.This angular momentum is removed from the accretor by the disk.When the mass exchange finishes,the accretor has a rotation typical of classical Be-type stars.
基金support from the SRF INSPIRE(IF 170314)fellowship program,Government of Indiafinancial support from the SERB Core Research Grant project,the Government of India。
文摘Contact binaries at various stages of evolution unveil various operating mechanisms that drive them.We report the photometric and period variation analysis of two contact binaries EV Cnc and AH Cnc in open cluster M67.We observed the cluster from the JCBT 1.3 m telescope and utilized TESS and Kepler observations.The photometric solutions of EV Cnc and AH Cnc revealed a mass ratio of q~0.41 and~0.15 with an inclination of i=42°and87°respectively.These solutions suggest that EV Cnc is probably a semi-detached and AH Cnc is a deep low-mass ratio contact binary.The study of O-C variation analysis indicates that for both systems,the period is increasing which suggests the mass transfer is occurring from secondary to primary.In the case of AH Cnc and based on simulations by randomly varying the time of minima to fit the LITE solution,we noted the third body orbital period to be around P_(3)=26.82±2.54 yr,which is different from earlier reported values and conclude that future observations are required to confirm this scenario.We compare these two systems with other similar contact binaries to get an estimate of the final configuration of the respective systems.
基金supported by the Joint Research Fund in Astronomy(grant No.U1631108)under a cooperative agreement between the National Natural Science Foundation of China(NSFC)the Chinese Academy of Sciences(CAS)the Chinese National Natural Science Foundation of China(NSFC,grant No.12103030)。
文摘V0405 Dra is a W UMa-type binary star.Based on the TESS data,we have conducted an orbital period study and performed a light curve analysis for the system.The orbital period study reveals that the O-C curve for V0405 Dra exhibits secular decrease at an extremely high rate of d P/dt=-2.71×10^(-6)day year^(-1),along with periodic variations characterized by an amplitude of A_(3)=0.0032 day and a period of P_(3)=1.413 years.The orbital periodic change is possibly due to the light-travel time effect resulting from an additional third body in the system,for which we estimate a minimum mass of M_(3)=0.77M_(⊙).By employing the 2013 version of the Wilson-Devinney(W-D)method to synthesize a light curve,we derived photometric solutions indicating that V0405 Dra is a new deep(f=68.7%)and low-mass ratio(q=0.175)contact binary.The fast decrease in its orbital period is likely caused by mass transfer from the more massive primary star to the less massive secondary star,or due to angular momentum loss.With further mass transfer and loss of angular momentum,the binary will gradually evolve into a tighter contact configuration,eventually leading to a merger into a single star,following the evolutionary paths suggested for such deep and low mass ratio contact binaries.
文摘We conducted the first light curve study of the binary star EL Tuc within the Binary Systems of South and North project's framework.The photometric observations were made using standard multiband BVR_cI_c filters at an observatory in Argentina.We presented a new ephemeris for EL Tuc and a linear fit to the O–C diagram,utilizing our extracted times of minima and additional literature.We employed the PHysics Of Eclipsing BinariEs Python code and the Markov chain Monte Carlo approach for the system's light curve analysis.The target system's light curve solution required a cold starspot on the hotter component.We conclude that EL Tuc is a total contact binary system with a low mass ratio of q=0.172±0.002,an orbital inclination of i=83°.74±0°.40,and a fillout factor of f=53.7%±1.6%.We used the P-a relationship and the Gaia Data Release 3 parallax method to determine the absolute parameters of EL Tuc to compare the precision of our results.This system was classified as W-type based on the mass and effective temperature of the companion stars.The positions of the systems were depicted on the M-L,M-R,T-M,and q-Lratiodiagrams.The relationship between the spectroscopic and photometric mass ratios of binaries was discussed.