小行星撞遇陆地是一个复杂的非线性动力学过程,难以通过模型试验的方法开展相关研究。数值计算为这一灾害动力学过程分析提供了重要的工具,基于自主研发的CoSim软件中离散元(Discrete Element Method,DEM)模块初步实现了小行星撞遇陆地...小行星撞遇陆地是一个复杂的非线性动力学过程,难以通过模型试验的方法开展相关研究。数值计算为这一灾害动力学过程分析提供了重要的工具,基于自主研发的CoSim软件中离散元(Discrete Element Method,DEM)模块初步实现了小行星撞遇陆地的大规模计算模拟。基于小行星撞遇陆地三维动力学全过程的数值仿真结果:实现了初始接触、撞遇挖掘、高速抛射和回落调整4个撞击阶段全过程仿真;小行星的碰撞入射角及撞遇过程中动力学行为将影响撞击坑的地形地貌特征。研究也表明大规模数值计算方法可较好地实现小行星撞遇地球这一动力学过程,为小行星防御提供支撑。展开更多
当前已经探测到超过5000颗系外行星,系外行星领域正在从搜寻普查进入到精细表征阶段。过去20年通过对大约100颗系外行星大气表征,初步建立了对凌星行星和直接成像行星的大气探测方法和一系列大气光谱正向建模、反演方法与大气理论的基...当前已经探测到超过5000颗系外行星,系外行星领域正在从搜寻普查进入到精细表征阶段。过去20年通过对大约100颗系外行星大气表征,初步建立了对凌星行星和直接成像行星的大气探测方法和一系列大气光谱正向建模、反演方法与大气理论的基本框架。詹姆斯·韦布空间望远镜(James Webb Space Telescope,JWST)具有前所未有的近红外到中红外光谱探测能力,高质量数据将带动大气理论与模型的跨越性发展。第一轮观测的科学产出展现了JWST对凌星行星和直接成像行星的大气表征能力以及对宜居带行星大气的初步限制。JWST时代的系外行星大气精细研究已初露峥嵘,与未来5年内即将建成的具有大气普查能力的ARIEL和大口径自适应光学地基望远镜相联合,将在更深的层次上揭示系外行星大气的多样性。展开更多
新视野号飞船(New Horizon Spacecraft,也译作新地平线号飞船)于2006年1月19日在美国佛罗里达州卡纳维拉尔角肯尼迪航天中心发射升空,预计2015年7月飞近冥王星探访,接着对柯伊伯带天体(Kuiper belt object,KBO)进行历时五年的...新视野号飞船(New Horizon Spacecraft,也译作新地平线号飞船)于2006年1月19日在美国佛罗里达州卡纳维拉尔角肯尼迪航天中心发射升空,预计2015年7月飞近冥王星探访,接着对柯伊伯带天体(Kuiper belt object,KBO)进行历时五年的探访。由于这些天体离地球很遥远,即使要发现它们都很困难,因此至今对它们仍不很了解。新视野号飞船远航开拓太空探测的新前沿,将揭示太阳系深空天体的秘密,有助于了解太阳系的形成和演化。展开更多
Earth’s near space,located in the region between 20 and 100 km above sea level,is characterized by extreme conditions,such as low temperature,low atmospheric pressure,harsh radiation,and extreme dryness.These conditi...Earth’s near space,located in the region between 20 and 100 km above sea level,is characterized by extreme conditions,such as low temperature,low atmospheric pressure,harsh radiation,and extreme dryness.These conditions are analogous to those found on the surface of Mars and in the atmosphere of Venus,making Earth’s near space a unique natural laboratory for astrobiological research.To address essential astrobiological questions,teams from the Chinese Academy of Sciences(CAS)have developed a scientific balloon platform,the CAS Balloon-Borne Astrobiology Platform(CAS-BAP),to study the effects of near space environmental conditions on the biology and survival strategies of representative organisms in this terrestrial analog.Here,we describe the versatile Biological Samples Exposure Payload(BIOSEP)loaded on the CAS-BAP with respect to its structure and function.The primary function of BIOSEP is to expose appropriate biological specimens to the harsh conditions of near space and subsequently return the exposed samples to laboratories for further analysis.Four successful flight missions in near space from 2019 to 2021 have demonstrated the high reliability and efficiency of the payload in communicating between hardware and software units,recording environmental data,exposing sample containers,protecting samples from external contamination,and recovering samples.Understanding the effects of Earth’s near space conditions on biological specimens will provide valuable insights into the survival strategies of organisms in extreme environments and the search for life beyond Earth.The development of BIOSEP and associated biological exposure experiments will enhance our understanding of the potential for life on Mars and the habitability of the atmospheric regions of other planets in the solar system and beyond.展开更多
In the original publication of the article,the affiliation“College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing,People’s Republic of China”for author Ziqi Wang was missing and i...In the original publication of the article,the affiliation“College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing,People’s Republic of China”for author Ziqi Wang was missing and included in this correction article.展开更多
Space sample retrieval is having a moment.On 24 September 2023,in a triumph of complex engineering,a US National Aeronau-tics and Space Administration(NASA)mission,OSIRUS-REx(short for origins,spectral interpretation,...Space sample retrieval is having a moment.On 24 September 2023,in a triumph of complex engineering,a US National Aeronau-tics and Space Administration(NASA)mission,OSIRUS-REx(short for origins,spectral interpretation,resource identification,and security-regolith explorer;regolith is the surface layer of uncon-solidated rocks and dust/soil covering bedrock),successfully deliv-ered to Earth a capsule containing the largest sample of asteroid material ever collected,captured from Bennu.展开更多
Observations of transmission spectra reveal that hot Jupiters and Neptunes are likely to possess escaping atmospheres driven by stellar radiation.Numerous models predict that magnetic fields may exert significant infl...Observations of transmission spectra reveal that hot Jupiters and Neptunes are likely to possess escaping atmospheres driven by stellar radiation.Numerous models predict that magnetic fields may exert significant influences on the atmospheres of hot planets.Generally,the escaping atmospheres are not entirely ionized,and magnetic fields only directly affect the escape of ionized components within them.Considering the chemical reactions between ionized components and neutral atoms,as well as collision processes,magnetic fields indirectly impact the escape of neutral atoms,thereby influencing the detection signals of planetary atmospheres in transmission spectra.In order to simulate this process,we developed a magnetohydrodynamic multi-fluid model based on MHD code PLUTO.As an initial exploration,we investigated the impact of magnetic fields on the decoupling of H^(+)and H in the escaping atmosphere of the hot Neptune GJ436b.Due to the strong resonant interactions between H and H^(+),the coupling between them is tight even if the magnetic field is strong.Of course,alternatively,our work also suggests that merging H and H^(+)into a single flow can be a reasonable assumption in MHD simulations of escaping atmospheres.However,our simulation results indicate that under the influence of magnetic fields,there are noticeable regional differences in the decoupling of H^(+)and H.With the increase of magnetic field strength,the degree of decoupling also increases.For heavier particles such as O,the decoupling between O and H^(+)is more pronounced.Our findings provide important insights for future studies on the decoupling processes of heavy atoms in the escaping atmospheres of hot Jupiters and hot Neptunes under the influence of magnetic fields.展开更多
Magnetic reconnection and dipolarization are crucial processes driving magnetospheric dynamics,including particle energization,mass circulation,and auroral processes,among others.Recent studies have revealed that thes...Magnetic reconnection and dipolarization are crucial processes driving magnetospheric dynamics,including particle energization,mass circulation,and auroral processes,among others.Recent studies have revealed that these processes at Saturn and Jupiter are fundamentally different from the ones at Earth.The reconnection and dipolarization processes are far more important than previously expected in the dayside magnetodisc of Saturn and potentially Jupiter.Dayside magnetodisc reconnection was directly identified by using Cassini measurements(Guo RL et al.,2018b)and was found to be drizzle-like and rotating in the magnetosphere of Saturn(Delamere et al.,2015b;Yao ZH et al.,2017a;Guo RL et al.,2019).Moreover,magnetic dipolarization could also exist at Saturn’s dayside(Yao ZH et al.,2018),which is fundamentally different from the terrestrial situation.These new results significantly improve our understanding of giant planetary magnetospheric dynamics and provide key insights revealing the physics of planetary aurorae.Here,we briefly review these recent advances and their potential implications for future investigations.展开更多
文摘小行星撞遇陆地是一个复杂的非线性动力学过程,难以通过模型试验的方法开展相关研究。数值计算为这一灾害动力学过程分析提供了重要的工具,基于自主研发的CoSim软件中离散元(Discrete Element Method,DEM)模块初步实现了小行星撞遇陆地的大规模计算模拟。基于小行星撞遇陆地三维动力学全过程的数值仿真结果:实现了初始接触、撞遇挖掘、高速抛射和回落调整4个撞击阶段全过程仿真;小行星的碰撞入射角及撞遇过程中动力学行为将影响撞击坑的地形地貌特征。研究也表明大规模数值计算方法可较好地实现小行星撞遇地球这一动力学过程,为小行星防御提供支撑。
文摘当前已经探测到超过5000颗系外行星,系外行星领域正在从搜寻普查进入到精细表征阶段。过去20年通过对大约100颗系外行星大气表征,初步建立了对凌星行星和直接成像行星的大气探测方法和一系列大气光谱正向建模、反演方法与大气理论的基本框架。詹姆斯·韦布空间望远镜(James Webb Space Telescope,JWST)具有前所未有的近红外到中红外光谱探测能力,高质量数据将带动大气理论与模型的跨越性发展。第一轮观测的科学产出展现了JWST对凌星行星和直接成像行星的大气表征能力以及对宜居带行星大气的初步限制。JWST时代的系外行星大气精细研究已初露峥嵘,与未来5年内即将建成的具有大气普查能力的ARIEL和大口径自适应光学地基望远镜相联合,将在更深的层次上揭示系外行星大气的多样性。
文摘新视野号飞船(New Horizon Spacecraft,也译作新地平线号飞船)于2006年1月19日在美国佛罗里达州卡纳维拉尔角肯尼迪航天中心发射升空,预计2015年7月飞近冥王星探访,接着对柯伊伯带天体(Kuiper belt object,KBO)进行历时五年的探访。由于这些天体离地球很遥远,即使要发现它们都很困难,因此至今对它们仍不很了解。新视野号飞船远航开拓太空探测的新前沿,将揭示太阳系深空天体的秘密,有助于了解太阳系的形成和演化。
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA17010505)
文摘Earth’s near space,located in the region between 20 and 100 km above sea level,is characterized by extreme conditions,such as low temperature,low atmospheric pressure,harsh radiation,and extreme dryness.These conditions are analogous to those found on the surface of Mars and in the atmosphere of Venus,making Earth’s near space a unique natural laboratory for astrobiological research.To address essential astrobiological questions,teams from the Chinese Academy of Sciences(CAS)have developed a scientific balloon platform,the CAS Balloon-Borne Astrobiology Platform(CAS-BAP),to study the effects of near space environmental conditions on the biology and survival strategies of representative organisms in this terrestrial analog.Here,we describe the versatile Biological Samples Exposure Payload(BIOSEP)loaded on the CAS-BAP with respect to its structure and function.The primary function of BIOSEP is to expose appropriate biological specimens to the harsh conditions of near space and subsequently return the exposed samples to laboratories for further analysis.Four successful flight missions in near space from 2019 to 2021 have demonstrated the high reliability and efficiency of the payload in communicating between hardware and software units,recording environmental data,exposing sample containers,protecting samples from external contamination,and recovering samples.Understanding the effects of Earth’s near space conditions on biological specimens will provide valuable insights into the survival strategies of organisms in extreme environments and the search for life beyond Earth.The development of BIOSEP and associated biological exposure experiments will enhance our understanding of the potential for life on Mars and the habitability of the atmospheric regions of other planets in the solar system and beyond.
文摘In the original publication of the article,the affiliation“College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing,People’s Republic of China”for author Ziqi Wang was missing and included in this correction article.
文摘Space sample retrieval is having a moment.On 24 September 2023,in a triumph of complex engineering,a US National Aeronau-tics and Space Administration(NASA)mission,OSIRUS-REx(short for origins,spectral interpretation,resource identification,and security-regolith explorer;regolith is the surface layer of uncon-solidated rocks and dust/soil covering bedrock),successfully deliv-ered to Earth a capsule containing the largest sample of asteroid material ever collected,captured from Bennu.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences,grant No.XDB 41000000National Natural Science Foundation of China(NSFC,Grant No.12288102)+4 种基金support of the National Natural Science Foundation of China(NSFC,Grant No.11973082)support of the National Natural Science Foundation of China(NSFC,Grant No.42305136)supported by the National Key R&D Program of China(Grant No.2021YFA1600400/2021YFA1600402)Natural Science Foundation of Yunnan Province(No.202201AT070158)the International Centre of Supernovae,Yunnan Key Laboratory(No.202302AN360001)。
文摘Observations of transmission spectra reveal that hot Jupiters and Neptunes are likely to possess escaping atmospheres driven by stellar radiation.Numerous models predict that magnetic fields may exert significant influences on the atmospheres of hot planets.Generally,the escaping atmospheres are not entirely ionized,and magnetic fields only directly affect the escape of ionized components within them.Considering the chemical reactions between ionized components and neutral atoms,as well as collision processes,magnetic fields indirectly impact the escape of neutral atoms,thereby influencing the detection signals of planetary atmospheres in transmission spectra.In order to simulate this process,we developed a magnetohydrodynamic multi-fluid model based on MHD code PLUTO.As an initial exploration,we investigated the impact of magnetic fields on the decoupling of H^(+)and H in the escaping atmosphere of the hot Neptune GJ436b.Due to the strong resonant interactions between H and H^(+),the coupling between them is tight even if the magnetic field is strong.Of course,alternatively,our work also suggests that merging H and H^(+)into a single flow can be a reasonable assumption in MHD simulations of escaping atmospheres.However,our simulation results indicate that under the influence of magnetic fields,there are noticeable regional differences in the decoupling of H^(+)and H.With the increase of magnetic field strength,the degree of decoupling also increases.For heavier particles such as O,the decoupling between O and H^(+)is more pronounced.Our findings provide important insights for future studies on the decoupling processes of heavy atoms in the escaping atmospheres of hot Jupiters and hot Neptunes under the influence of magnetic fields.
基金Z.Y.acknowledges the National Natural Science Foundation of China(Grant No.42074211).
文摘Magnetic reconnection and dipolarization are crucial processes driving magnetospheric dynamics,including particle energization,mass circulation,and auroral processes,among others.Recent studies have revealed that these processes at Saturn and Jupiter are fundamentally different from the ones at Earth.The reconnection and dipolarization processes are far more important than previously expected in the dayside magnetodisc of Saturn and potentially Jupiter.Dayside magnetodisc reconnection was directly identified by using Cassini measurements(Guo RL et al.,2018b)and was found to be drizzle-like and rotating in the magnetosphere of Saturn(Delamere et al.,2015b;Yao ZH et al.,2017a;Guo RL et al.,2019).Moreover,magnetic dipolarization could also exist at Saturn’s dayside(Yao ZH et al.,2018),which is fundamentally different from the terrestrial situation.These new results significantly improve our understanding of giant planetary magnetospheric dynamics and provide key insights revealing the physics of planetary aurorae.Here,we briefly review these recent advances and their potential implications for future investigations.