Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves ...Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves both upper and lower motor neurons,human and animal studies over the years have highlighted the potential spread to other motor and non-motor regions,expanding the phenotype of ALS.Although superoxide dismutase 1(SOD1)mutations represent a minority of ALS cases,the SOD1 gene remains a milestone in ALS research as it represents the first genetic target for personalized therapies.Despite numerous single case reports or case series exhibiting extramotor symptoms in patients with ALS mutations in SOD1(SOD1-ALS),no studies have comprehensively explored the full spectrum of extramotor neurological manifestations in this subpopulation.In this narrative review,we analyze and discuss the available literature on extrapyramidal and non-motor features during SOD1-ALS.The multifaceted expression of SOD1 could deepen our understanding of the pathogenic mechanisms,pointing towards a multidisciplinary approach for affected patients in light of new therapeutic strategies for SOD1-ALS.展开更多
Spinal muscular atrophy is a devastating motor neuron disease characterized by severe cases of fatal muscle weakness.It is one of the most common genetic causes of mortality among infants aged less than 2 years.Biomar...Spinal muscular atrophy is a devastating motor neuron disease characterized by severe cases of fatal muscle weakness.It is one of the most common genetic causes of mortality among infants aged less than 2 years.Biomarker research is currently receiving more attention,and new candidate biomarkers are constantly being discovered.This review initially discusses the evaluation methods commonly used in clinical practice while briefly outlining their respective pros and cons.We also describe recent advancements in research and the clinical significance of molecular biomarkers for spinal muscular atrophy,which are classified as either specific or non-specific biomarkers.This review provides new insights into the pathogenesis of spinal muscular atrophy,the mechanism of biomarkers in response to drug-modified therapies,the selection of biomarker candidates,and would promote the development of future research.Furthermore,the successful utilization of biomarkers may facilitate the implementation of gene-targeting treatments for patients with spinal muscular atrophy.展开更多
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited.The principal pathological alterations of the disease include the selective d...Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited.The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain,brainstem,and spinal cord,as well as abnormal protein deposition in the cytoplasm of neurons and glial cells.The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid,blood,and even urine.Among these biomarke rs,neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system,while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles.Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity.However,there are challenges in using neurofilament light chain to diffe rentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury.Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment,oxygen saturation,and the glomerular filtration rate.TAR DNA-binding protein 43,a pathological protein associated with amyotrophic lateral sclerosis,is emerging as a promising biomarker,particularly with advancements in exosome-related research.Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers;however,they show potential in predicting disease prognosis.Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years,the quest for definitive diagnostic and prognostic biomarke rs remains a formidable challenge.This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.展开更多
Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives ...Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives and may lead them to be confined to bed.However,the effect of upper and lower motor neuron impairment and other risk factors on bilateral limb involvement is unclear.To address this issue,we retrospectively collected data from 586 amyotrophic lateral sclerosis patients with limb onset diagnosed at Peking University Third Hospital between January 2020 and May 2022.A univariate analysis revealed no significant differences in the time intervals of spread in different directions between individuals with upper motor neuron-dominant amyotrophic lateral sclerosis and those with classic amyotrophic lateral sclerosis.We used causal directed acyclic graphs for risk factor determination and Cox proportional hazards models to investigate the association between the duration of bilateral limb involvement and clinical baseline characteristics in amyotrophic lateral sclerosis patients.Multiple factor analyses revealed that higher upper motor neuron scores(hazard ratio[HR]=1.05,95%confidence interval[CI]=1.01–1.09,P=0.018),onset in the left limb(HR=0.72,95%CI=0.58–0.89,P=0.002),and a horizontal pattern of progression(HR=0.46,95%CI=0.37–0.58,P<0.001)were risk factors for a shorter interval until bilateral limb involvement.The results demonstrated that a greater degree of upper motor neuron involvement might cause contralateral limb involvement to progress more quickly in limb-onset amyotrophic lateral sclerosis patients.These findings may improve the management of amyotrophic lateral sclerosis patients with limb onset and the prediction of patient prognosis.展开更多
Schwann cells are essential for the maintenance and function of motor neurons,axonal networks,and the neuromuscular junction.In amyotrophic lateral sclerosis,where motor neuron function is progressively lost,Schwann c...Schwann cells are essential for the maintenance and function of motor neurons,axonal networks,and the neuromuscular junction.In amyotrophic lateral sclerosis,where motor neuron function is progressively lost,Schwann cell function may also be impaired.Recently,important signaling and potential trophic activities of Schwann cell-derived exosomal vesicles have been reported.This case report describes the treatment of a patient with advanced amyotrophic lateral sclerosis using serial intravenous infusions of allogeneic Schwann cell-derived exosomal vesicles,marking,to our knowledge,the first instance of such treatment.An 81-year-old male patient presented with a 1.5-year history of rapidly progressive amyotrophic lateral sclerosis.After initial diagnosis,the patient underwent a combination of generic riluzole,sodium phenylbutyrate for the treatment of amyotrophic lateral sclerosis,and taurursodiol.The patient volunteered to participate in an FDA-approved single-patient expanded access treatment and received weekly intravenous infusions of allogeneic Schwann cell-derived exosomal vesicles to potentially restore impaired Schwann cell and motor neuron function.We confirmed that cultured Schwann cells obtained from the amyotrophic lateral sclerosis patient via sural nerve biopsy appeared impaired(senescent)and that exposure of the patient’s Schwann cells to allogeneic Schwann cell-derived exosomal vesicles,cultured expanded from a cadaver donor improved their growth capacity in vitro.After a period of observation lasting 10 weeks,during which amyotrophic lateral sclerosis Functional Rating Scale-Revised and pulmonary function were regularly monitored,the patient received weekly consecutive infusions of 1.54×1012(×2),and then consecutive infusions of 7.5×1012(×6)allogeneic Schwann cell-derived exosomal vesicles diluted in 40 mL of Dulbecco’s phosphate-buffered saline.None of the infusions were associated with adverse events such as infusion reactions(allergic or otherwise)or changes in vital signs.Clinical lab serum neurofilament and cytokine levels measured prior to each infusion varied somewhat without a clear trend.A more sensitive in-house assay suggested possible inflammasome activation during the disease course.A trend for clinical stabilization was observed during the infusion period.Our study provides a novel approach to address impaired Schwann cells and possibly motor neuron function in patients with amyotrophic lateral sclerosis using allogeneic Schwann cell-derived exosomal vesicles.Initial findings suggest that this approach is safe.展开更多
Amyotrophic lateral sclerosis(ALS),also known as Lou Geh rig's disease,is a progressive neurodegenerative disorder that affects motor neurons in the brain and spinal cord.This leads to muscle weakness,paralysis,an...Amyotrophic lateral sclerosis(ALS),also known as Lou Geh rig's disease,is a progressive neurodegenerative disorder that affects motor neurons in the brain and spinal cord.This leads to muscle weakness,paralysis,and ultimately,respiratory failure(Cha and Kim,2022).展开更多
Amyotrophic lateral sclerosis(ALS)is a progressive neurodegenerative disorder characterized by the degeneration of motor neurons in the brain and spinal cord,leading to muscle weakness,paralysis,and ultimately death(C...Amyotrophic lateral sclerosis(ALS)is a progressive neurodegenerative disorder characterized by the degeneration of motor neurons in the brain and spinal cord,leading to muscle weakness,paralysis,and ultimately death(Cleveland and Rothstein,2001).Frontotemporal lobar degeneration(FTLD)is a neurodegenerative disease affecting the frontal and temporal lobes of the brain,leading to changes in behavior,personality,and language(Van Langenhove et al.,2012).Both ALS and FTLD are classified as proteinopathies in which abnormal protein aggregation and accumulation in neurons contribute to the disease pathogenesis.Fused in sarcoma(FUS)is a DNA/RNA-binding protein involved in various cellular processes,including transcriptional regulation,RNA splicing,and DNA repair.Mutations in the FUS gene have been linked to familial ALS,highlighting the importance of FUS in the disease pathogenesis(Vance et al.,2009).In ALS and FTLD,aberrant post-translational modifications(PTMs)of FUS,such as phosphorylation,acetylation,and methylation,have been implicated in the promotion of FUS aggregation and neurotoxicity(Choi et al.,2023).Therefore,understanding the regulatory mechanisms of FUS PTMs is crucial for developing targeted therapies against these diseases.展开更多
Macrophage migration inhibitory factor(MIF):MIF acts as a pleiotropic inflammatory mediator,playing regulatory roles in innate and adaptive immunity,neuroinflammation,neuroendocrine functions,and nervous system develo...Macrophage migration inhibitory factor(MIF):MIF acts as a pleiotropic inflammatory mediator,playing regulatory roles in innate and adaptive immunity,neuroinflammation,neuroendocrine functions,and nervous system development(Matejuk et al.,2024).In recent years,MIF has attra cted significant inte rest from research groups as a potential target for the treatment of various neurodegenerative diseases,including Alzheimer's disease,Parkinson's disease,multiple sclerosis,and glioblastoma(Matejuk et al.,2024).展开更多
Comprehensive studies identify motor neuron spectrum disorders including amyotrophic lateral sclerosis(ALS)as globally rising fatal disorders with the highest prevalence in aging populations,influenced by ethnicity an...Comprehensive studies identify motor neuron spectrum disorders including amyotrophic lateral sclerosis(ALS)as globally rising fatal disorders with the highest prevalence in aging populations,influenced by ethnicity and ancestry(GBD 2016 Motor Neuron Disease Colla borators,2018).While~10% of diagnoses involve a family history(fALS),most cases are considered sporadic(sALS).However,population-based studies suggest that even cases without a common index mutation impart heritability(Ryan et al.,2019),indicating a crucial role of rare and as yet unknown genetic denominators.展开更多
Amyotrophic lateral sclerosis(ALS)is a devastating neurological disease characterized by the accumulation of aberrant proteins in motor neurons of the brain and spinal cord.Patients with ALS develop skeletal muscle we...Amyotrophic lateral sclerosis(ALS)is a devastating neurological disease characterized by the accumulation of aberrant proteins in motor neurons of the brain and spinal cord.Patients with ALS develop skeletal muscle weakness,resulting in death from respiratory paralysis,which usually occurs 2-4 years after clinical onset(Goutman et al.,2022).展开更多
Biomarke rs are required for the early detection,prognosis prediction,and monitoring of amyotrophic lateral sclerosis,a progressive disease.Proteomics is an unbiased and quantitative method that can be used to detect ...Biomarke rs are required for the early detection,prognosis prediction,and monitoring of amyotrophic lateral sclerosis,a progressive disease.Proteomics is an unbiased and quantitative method that can be used to detect neurochemical signatures to aid in the identification of candidate biomarke rs.In this study,we used a label-free quantitative proteomics approach to screen for substantially differentially regulated proteins in ten patients with sporadic amyotrophic lateral scle rosis compared with five healthy controls.Su bstantial upregulation of serum proteins related to multiple functional clusters was observed in patients with spo radic amyotrophic lateral sclerosis.Potential biomarke rs were selected based on functionality and expression specificity.To validate the proteomics profiles,blood samples from an additional cohort comprising 100 patients with sporadic amyotrophic lateral sclerosis and 100 healthy controls were subjected to enzyme-linked immunosorbent assay.Eight substantially upregulated serum proteins in patients with spora dic amyotrophic lateral sclerosis were selected,of which the cathelicidin-related antimicrobial peptide demonstrated the best discriminative ability between patients with sporadic amyotrophic lateral sclerosis and healthy controls(area under the curve[AUC]=0.713,P<0.0001).To further enhance diagnostic accuracy,a multi-protein combined discriminant algorithm was developed incorporating five proteins(hemoglobin beta,cathelicidin-related antimicrobial peptide,talin-1,zyxin,and translationally-controlled tumor protein).The algo rithm achieved an AUC of 0.811 and a P-value of<0.0001,resulting in 79%sensitivity and 71%specificity for the diagnosis of sporadic amyotrophic lateral scle rosis.Subsequently,the ability of candidate biomarkers to discriminate between early-stage amyotrophic lateral sclerosis patients and controls,as well as patients with different disease severities,was examined.A two-protein panel comprising talin-1 and translationally-controlled tumor protein effectively distinguished early-stage amyotrophic lateral sclerosis patients from controls(AUC=0.766,P<0.0001).Moreove r,the expression of three proteins(FK506 binding protein 1A,cathelicidin-related antimicrobial peptide,and hemoglobin beta-1)was found to increase with disease progression.The proteomic signatures developed in this study may help facilitate early diagnosis and monitor the progression of sporadic amyotrophic lateral sclerosis when used in co mbination with curre nt clinical-based parameters.展开更多
The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves t...The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves the muscles of the upper and/or lower extremities,and the muscles of the bulbar and/or respiratory regions.However,as the disease progresses,it affects the adjacent body regions,leading to generalized muscle weakness,occasionally along with memory,cognitive,behavioral,and language impairments;respiratory dysfunction occurs at the final stage of the disease.The disease has a complicated pathophysiology and currently,only riluzole,edaravone,and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries.The TAR DNA-binding protein 43 inclusions are observed in 97%of those diagnosed with amyotrophic lateral sclerosis.This review provides a preliminary overview of the potential effects of TAR DNAbinding protein 43 in the pathogenesis of amyotrophic lateral sclerosis,including the abnormalities in nucleoplasmic transport,RNA function,post-translational modification,liquid-liquid phase separation,stress granules,mitochondrial dysfunction,oxidative stress,axonal transport,protein quality control system,and non-cellular autonomous functions(e.g.,glial cell functions and prion-like propagation).展开更多
文摘Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves both upper and lower motor neurons,human and animal studies over the years have highlighted the potential spread to other motor and non-motor regions,expanding the phenotype of ALS.Although superoxide dismutase 1(SOD1)mutations represent a minority of ALS cases,the SOD1 gene remains a milestone in ALS research as it represents the first genetic target for personalized therapies.Despite numerous single case reports or case series exhibiting extramotor symptoms in patients with ALS mutations in SOD1(SOD1-ALS),no studies have comprehensively explored the full spectrum of extramotor neurological manifestations in this subpopulation.In this narrative review,we analyze and discuss the available literature on extrapyramidal and non-motor features during SOD1-ALS.The multifaceted expression of SOD1 could deepen our understanding of the pathogenic mechanisms,pointing towards a multidisciplinary approach for affected patients in light of new therapeutic strategies for SOD1-ALS.
基金supported by the Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education&Shanghai,No.CCTS-2022205the“Double World-Class Project”of Shanghai Jiaotong University School of Medicine(both to JZ)。
文摘Spinal muscular atrophy is a devastating motor neuron disease characterized by severe cases of fatal muscle weakness.It is one of the most common genetic causes of mortality among infants aged less than 2 years.Biomarker research is currently receiving more attention,and new candidate biomarkers are constantly being discovered.This review initially discusses the evaluation methods commonly used in clinical practice while briefly outlining their respective pros and cons.We also describe recent advancements in research and the clinical significance of molecular biomarkers for spinal muscular atrophy,which are classified as either specific or non-specific biomarkers.This review provides new insights into the pathogenesis of spinal muscular atrophy,the mechanism of biomarkers in response to drug-modified therapies,the selection of biomarker candidates,and would promote the development of future research.Furthermore,the successful utilization of biomarkers may facilitate the implementation of gene-targeting treatments for patients with spinal muscular atrophy.
文摘Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited.The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain,brainstem,and spinal cord,as well as abnormal protein deposition in the cytoplasm of neurons and glial cells.The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid,blood,and even urine.Among these biomarke rs,neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system,while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles.Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity.However,there are challenges in using neurofilament light chain to diffe rentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury.Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment,oxygen saturation,and the glomerular filtration rate.TAR DNA-binding protein 43,a pathological protein associated with amyotrophic lateral sclerosis,is emerging as a promising biomarker,particularly with advancements in exosome-related research.Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers;however,they show potential in predicting disease prognosis.Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years,the quest for definitive diagnostic and prognostic biomarke rs remains a formidable challenge.This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.
基金supported by the National Natural Science Foundation of China,Nos.82071426,81873784Clinical Cohort Construction Program of Peking University Third Hospital,No.BYSYDL2019002(all to DF)。
文摘Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives and may lead them to be confined to bed.However,the effect of upper and lower motor neuron impairment and other risk factors on bilateral limb involvement is unclear.To address this issue,we retrospectively collected data from 586 amyotrophic lateral sclerosis patients with limb onset diagnosed at Peking University Third Hospital between January 2020 and May 2022.A univariate analysis revealed no significant differences in the time intervals of spread in different directions between individuals with upper motor neuron-dominant amyotrophic lateral sclerosis and those with classic amyotrophic lateral sclerosis.We used causal directed acyclic graphs for risk factor determination and Cox proportional hazards models to investigate the association between the duration of bilateral limb involvement and clinical baseline characteristics in amyotrophic lateral sclerosis patients.Multiple factor analyses revealed that higher upper motor neuron scores(hazard ratio[HR]=1.05,95%confidence interval[CI]=1.01–1.09,P=0.018),onset in the left limb(HR=0.72,95%CI=0.58–0.89,P=0.002),and a horizontal pattern of progression(HR=0.46,95%CI=0.37–0.58,P<0.001)were risk factors for a shorter interval until bilateral limb involvement.The results demonstrated that a greater degree of upper motor neuron involvement might cause contralateral limb involvement to progress more quickly in limb-onset amyotrophic lateral sclerosis patients.These findings may improve the management of amyotrophic lateral sclerosis patients with limb onset and the prediction of patient prognosis.
基金support from the Miami Project to Cure Paralysis,the Buoniconti Fund,and the Interdisciplinary Stem Cell Institute(to AK,WDD,JDG,and ADL)the unconditional support of Dean Henri Ford of the Leonard M.Miller School of Medicine at the University of Miami.
文摘Schwann cells are essential for the maintenance and function of motor neurons,axonal networks,and the neuromuscular junction.In amyotrophic lateral sclerosis,where motor neuron function is progressively lost,Schwann cell function may also be impaired.Recently,important signaling and potential trophic activities of Schwann cell-derived exosomal vesicles have been reported.This case report describes the treatment of a patient with advanced amyotrophic lateral sclerosis using serial intravenous infusions of allogeneic Schwann cell-derived exosomal vesicles,marking,to our knowledge,the first instance of such treatment.An 81-year-old male patient presented with a 1.5-year history of rapidly progressive amyotrophic lateral sclerosis.After initial diagnosis,the patient underwent a combination of generic riluzole,sodium phenylbutyrate for the treatment of amyotrophic lateral sclerosis,and taurursodiol.The patient volunteered to participate in an FDA-approved single-patient expanded access treatment and received weekly intravenous infusions of allogeneic Schwann cell-derived exosomal vesicles to potentially restore impaired Schwann cell and motor neuron function.We confirmed that cultured Schwann cells obtained from the amyotrophic lateral sclerosis patient via sural nerve biopsy appeared impaired(senescent)and that exposure of the patient’s Schwann cells to allogeneic Schwann cell-derived exosomal vesicles,cultured expanded from a cadaver donor improved their growth capacity in vitro.After a period of observation lasting 10 weeks,during which amyotrophic lateral sclerosis Functional Rating Scale-Revised and pulmonary function were regularly monitored,the patient received weekly consecutive infusions of 1.54×1012(×2),and then consecutive infusions of 7.5×1012(×6)allogeneic Schwann cell-derived exosomal vesicles diluted in 40 mL of Dulbecco’s phosphate-buffered saline.None of the infusions were associated with adverse events such as infusion reactions(allergic or otherwise)or changes in vital signs.Clinical lab serum neurofilament and cytokine levels measured prior to each infusion varied somewhat without a clear trend.A more sensitive in-house assay suggested possible inflammasome activation during the disease course.A trend for clinical stabilization was observed during the infusion period.Our study provides a novel approach to address impaired Schwann cells and possibly motor neuron function in patients with amyotrophic lateral sclerosis using allogeneic Schwann cell-derived exosomal vesicles.Initial findings suggest that this approach is safe.
基金supported by the BK21 FOUR(Fostering Outstanding Universities for Research)the Basic Science Research Program through the National Research Foundation of Korea(NRF)+2 种基金the Regional Innovation Mega Project Program through the Korea Innovation Foundation funded by the Ministry of Education(MOE)the Ministry of Science and ICT(MSIT)(NRF-2022R1A2C1004204,RS-2023-00219563,2023-DD-UP-0007)the Soonchunhyang University Research Fund(to KK)。
文摘Amyotrophic lateral sclerosis(ALS),also known as Lou Geh rig's disease,is a progressive neurodegenerative disorder that affects motor neurons in the brain and spinal cord.This leads to muscle weakness,paralysis,and ultimately,respiratory failure(Cha and Kim,2022).
基金supported by the BK21 FOUR(Fostering Outstanding Universities for Research)and the Basic Science Research Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Education(MOE)and the Ministry of Science and ICT(MSIT)(NRF-2022R1A2C1004204,RS-2023-00219563,2023-DD-UP-0007)by the Soonchunhyang University Research Fund(to KK)。
文摘Amyotrophic lateral sclerosis(ALS)is a progressive neurodegenerative disorder characterized by the degeneration of motor neurons in the brain and spinal cord,leading to muscle weakness,paralysis,and ultimately death(Cleveland and Rothstein,2001).Frontotemporal lobar degeneration(FTLD)is a neurodegenerative disease affecting the frontal and temporal lobes of the brain,leading to changes in behavior,personality,and language(Van Langenhove et al.,2012).Both ALS and FTLD are classified as proteinopathies in which abnormal protein aggregation and accumulation in neurons contribute to the disease pathogenesis.Fused in sarcoma(FUS)is a DNA/RNA-binding protein involved in various cellular processes,including transcriptional regulation,RNA splicing,and DNA repair.Mutations in the FUS gene have been linked to familial ALS,highlighting the importance of FUS in the disease pathogenesis(Vance et al.,2009).In ALS and FTLD,aberrant post-translational modifications(PTMs)of FUS,such as phosphorylation,acetylation,and methylation,have been implicated in the promotion of FUS aggregation and neurotoxicity(Choi et al.,2023).Therefore,understanding the regulatory mechanisms of FUS PTMs is crucial for developing targeted therapies against these diseases.
基金supported by grants from the Israel Science Foundation(ISF#284/19)German Israeli Foundation(GIF#I-116-415.6-2016)(to AI)。
文摘Macrophage migration inhibitory factor(MIF):MIF acts as a pleiotropic inflammatory mediator,playing regulatory roles in innate and adaptive immunity,neuroinflammation,neuroendocrine functions,and nervous system development(Matejuk et al.,2024).In recent years,MIF has attra cted significant inte rest from research groups as a potential target for the treatment of various neurodegenerative diseases,including Alzheimer's disease,Parkinson's disease,multiple sclerosis,and glioblastoma(Matejuk et al.,2024).
基金The lab of AK obtained support from the Interdisciplinary Center for Clinical Research(IZKF)Jena(MSPProject ID:MSP09)+2 种基金DG and MJA B were supported by the Circular Vision project,which has received funding from the European Union's Horizon 2020 research and innovation program(Grant agreement No.899417)the Ministerio de Ciencia e Innovoción,Spain(Grant No.PID2020-119715GB-I00/AEI/10.13039/501100011033)the Instituto de Salud CarlosⅢ,Infrastructure of Precision Medicine associated with Science and Technology(IMPaCT)of the Strategic Action in Health(iDATAMP)(to MJAB)。
文摘Comprehensive studies identify motor neuron spectrum disorders including amyotrophic lateral sclerosis(ALS)as globally rising fatal disorders with the highest prevalence in aging populations,influenced by ethnicity and ancestry(GBD 2016 Motor Neuron Disease Colla borators,2018).While~10% of diagnoses involve a family history(fALS),most cases are considered sporadic(sALS).However,population-based studies suggest that even cases without a common index mutation impart heritability(Ryan et al.,2019),indicating a crucial role of rare and as yet unknown genetic denominators.
基金supported in port by the JSPS KAKENHI(grant number 22K07539 to MS)funded by Mitsubishi Tanabe Pharma Corporation。
文摘Amyotrophic lateral sclerosis(ALS)is a devastating neurological disease characterized by the accumulation of aberrant proteins in motor neurons of the brain and spinal cord.Patients with ALS develop skeletal muscle weakness,resulting in death from respiratory paralysis,which usually occurs 2-4 years after clinical onset(Goutman et al.,2022).
基金supported by the grants from Shanghai Shuguang Plan Project,No.18SG15(to SC)Shanghai Outstanding Young Scholars Project+2 种基金Shanghai Talent Development Project,No.2019044(to SC)Medical-engineering cross fund of Shanghai Jiao Tong University,No.YG2022QN009(to QZ)the National Natural Science Foundation of China,No.82201558(to QZ)。
文摘Biomarke rs are required for the early detection,prognosis prediction,and monitoring of amyotrophic lateral sclerosis,a progressive disease.Proteomics is an unbiased and quantitative method that can be used to detect neurochemical signatures to aid in the identification of candidate biomarke rs.In this study,we used a label-free quantitative proteomics approach to screen for substantially differentially regulated proteins in ten patients with sporadic amyotrophic lateral scle rosis compared with five healthy controls.Su bstantial upregulation of serum proteins related to multiple functional clusters was observed in patients with spo radic amyotrophic lateral sclerosis.Potential biomarke rs were selected based on functionality and expression specificity.To validate the proteomics profiles,blood samples from an additional cohort comprising 100 patients with sporadic amyotrophic lateral sclerosis and 100 healthy controls were subjected to enzyme-linked immunosorbent assay.Eight substantially upregulated serum proteins in patients with spora dic amyotrophic lateral sclerosis were selected,of which the cathelicidin-related antimicrobial peptide demonstrated the best discriminative ability between patients with sporadic amyotrophic lateral sclerosis and healthy controls(area under the curve[AUC]=0.713,P<0.0001).To further enhance diagnostic accuracy,a multi-protein combined discriminant algorithm was developed incorporating five proteins(hemoglobin beta,cathelicidin-related antimicrobial peptide,talin-1,zyxin,and translationally-controlled tumor protein).The algo rithm achieved an AUC of 0.811 and a P-value of<0.0001,resulting in 79%sensitivity and 71%specificity for the diagnosis of sporadic amyotrophic lateral scle rosis.Subsequently,the ability of candidate biomarkers to discriminate between early-stage amyotrophic lateral sclerosis patients and controls,as well as patients with different disease severities,was examined.A two-protein panel comprising talin-1 and translationally-controlled tumor protein effectively distinguished early-stage amyotrophic lateral sclerosis patients from controls(AUC=0.766,P<0.0001).Moreove r,the expression of three proteins(FK506 binding protein 1A,cathelicidin-related antimicrobial peptide,and hemoglobin beta-1)was found to increase with disease progression.The proteomic signatures developed in this study may help facilitate early diagnosis and monitor the progression of sporadic amyotrophic lateral sclerosis when used in co mbination with curre nt clinical-based parameters.
基金in part supported by the National Natural Science Foundation of China,Nos.30560042,81160161,81360198,and 82160255Education Department of Jiangxi Province,Nos.GJJ13198 and GJJ170021+1 种基金Jiangxi Provincial Department of Science and Technology,No.20192BAB205043Health and Family Planning Commission of Jiangxi Province,Nos.20181019 and 202210002(all to RX)。
文摘The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves the muscles of the upper and/or lower extremities,and the muscles of the bulbar and/or respiratory regions.However,as the disease progresses,it affects the adjacent body regions,leading to generalized muscle weakness,occasionally along with memory,cognitive,behavioral,and language impairments;respiratory dysfunction occurs at the final stage of the disease.The disease has a complicated pathophysiology and currently,only riluzole,edaravone,and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries.The TAR DNA-binding protein 43 inclusions are observed in 97%of those diagnosed with amyotrophic lateral sclerosis.This review provides a preliminary overview of the potential effects of TAR DNAbinding protein 43 in the pathogenesis of amyotrophic lateral sclerosis,including the abnormalities in nucleoplasmic transport,RNA function,post-translational modification,liquid-liquid phase separation,stress granules,mitochondrial dysfunction,oxidative stress,axonal transport,protein quality control system,and non-cellular autonomous functions(e.g.,glial cell functions and prion-like propagation).