The elaborate redox network of the cell,comprising of events like turnover of reactive oxygen species(ROS),redox sensing,signaling,expression of redox-sensitive genes,etc.,often orchestrates with other bonafide hormon...The elaborate redox network of the cell,comprising of events like turnover of reactive oxygen species(ROS),redox sensing,signaling,expression of redox-sensitive genes,etc.,often orchestrates with other bonafide hormonal signaling pathways through their synergistic or antagonistic action in the plant cell.The redox cue generated in plant cells under fluctuating environmental conditions can significantly influence other hormonal biosynthetic or signaling mechanisms,thereby modulating physiology towards stress acclimation and defense.There is also strong evidence of the recruitment of ROS as a‘second messenger’in different hormonal signaling pathways under stress.Moreover,the retrograde signaling initiated by ROS also found to strongly influence hormonal homeostasis and signaling.The present review,in this aspect,is an effort towards understanding the regulatory roles of ROS in integrating and orchestrating other hormonal signaling pathways or vice versa so as to unfold the relationship between these two signaling episodes of plant cells under environmental odds.We also accentuate the significance of understanding the utterly complex interactions,which occur both at metabolic and genetic levels between ROS and phytohormones during stress combinations.Furthermore,the significant and decisive role of ROS turnover,particularly the contribution of RBOH(respiratory burst oxidase homologs)in the synergism of redox and hormone signaling during systemic acquired acclimation under stress is also discussed.展开更多
As the climate worsens and the demand for food grows,so does the interest in nanoagriculture.The interaction between plants and nanomaterials(NMs)has been extensively and intensively examined.However,stopping at the o...As the climate worsens and the demand for food grows,so does the interest in nanoagriculture.The interaction between plants and nanomaterials(NMs)has been extensively and intensively examined.However,stopping at the outcome of a phenomenon is often insufficient.Therefore,we introduce three important processes of nanoparticleplant interactions:translocation,transformation,and plant metabolism.During the migration of nanoparticles,size and surface electrical properties are the main determining factors.Additionally,the interaction of nanoparticles with cell membranes is another key aspect of research.The transformation of nanoparticles in plants is mainly due to redox substances.The way that nanoparticles affect plant metabolism may be able to shed light on the interaction of nanoparticles with plants.This review adds to the existing knowledge on the design of nanoagrochemicals and summarizes the mechanism of interaction of NMs with plants.In this way,NMs can be used for their beneficial effects and thus contribute to the maintenance of food security and sustainable development.展开更多
基金DST-SERB(Government of India)for research funding(No.CRG/2021/000513,dated 15/12/2021)UGC-CAS and DST-FIST(Government of India)for infrastructural support for research to the Department of Botany,University of Burdwan,India[No.F.5-13/012(SAP-II),and No.SRFST/LSI/2018/188(C)]+4 种基金the University Grants Commission(UGC),New Delhi,for Junior Research Fellowship(Joint CSIR-UGC)the State Funded Research Grant,Government of West Bengal.India[No.FC(Sc.)/RS/SF/BOT/2016-17/210/1(4)]Department of Science Technology and Biotechnology(DSTBT),Government of West Bengal.IndiaIndian Council for Cultural Relations(ICCR)for India Scholarships(Bangladesh)Scheme,2016-2017(No.DAC/EDU/17/1/2016,dated 10.07.2016)DST-SERB,Government of India.
文摘The elaborate redox network of the cell,comprising of events like turnover of reactive oxygen species(ROS),redox sensing,signaling,expression of redox-sensitive genes,etc.,often orchestrates with other bonafide hormonal signaling pathways through their synergistic or antagonistic action in the plant cell.The redox cue generated in plant cells under fluctuating environmental conditions can significantly influence other hormonal biosynthetic or signaling mechanisms,thereby modulating physiology towards stress acclimation and defense.There is also strong evidence of the recruitment of ROS as a‘second messenger’in different hormonal signaling pathways under stress.Moreover,the retrograde signaling initiated by ROS also found to strongly influence hormonal homeostasis and signaling.The present review,in this aspect,is an effort towards understanding the regulatory roles of ROS in integrating and orchestrating other hormonal signaling pathways or vice versa so as to unfold the relationship between these two signaling episodes of plant cells under environmental odds.We also accentuate the significance of understanding the utterly complex interactions,which occur both at metabolic and genetic levels between ROS and phytohormones during stress combinations.Furthermore,the significant and decisive role of ROS turnover,particularly the contribution of RBOH(respiratory burst oxidase homologs)in the synergism of redox and hormone signaling during systemic acquired acclimation under stress is also discussed.
基金supported by the National Key R&D Program of China(2017YFD0801300,2017YFD0801103)the Key National Natural Science Foundation of China(No.41130526)+1 种基金Professor workstation in Yuhuangmiao Town,Shanghe County,China Agricultural UniversityProfessor Workstation in Sunji Town,Shanghe County,China Agricultural University.
文摘As the climate worsens and the demand for food grows,so does the interest in nanoagriculture.The interaction between plants and nanomaterials(NMs)has been extensively and intensively examined.However,stopping at the outcome of a phenomenon is often insufficient.Therefore,we introduce three important processes of nanoparticleplant interactions:translocation,transformation,and plant metabolism.During the migration of nanoparticles,size and surface electrical properties are the main determining factors.Additionally,the interaction of nanoparticles with cell membranes is another key aspect of research.The transformation of nanoparticles in plants is mainly due to redox substances.The way that nanoparticles affect plant metabolism may be able to shed light on the interaction of nanoparticles with plants.This review adds to the existing knowledge on the design of nanoagrochemicals and summarizes the mechanism of interaction of NMs with plants.In this way,NMs can be used for their beneficial effects and thus contribute to the maintenance of food security and sustainable development.